

# Об утверждении гигиенических нормативов "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Утративший силу

Приказ Министра национальной экономики Республики Казахстан от 27 февраля 2015 года № 155. Зарегистрирован в Министерстве юстиции Республики Казахстан 10 апреля 2015 года № 10671. Утратил силу приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71.

Сноска. Утратил силу приказом Министра здравоохранения РК от 02.08.2022 № ҚР ДСМ-71 (вводится в действие по истечении десяти календарных дней после дня его первого официального опубликования).

В соответствии с пунктом 6 статьи 144 Кодекса Республики Казахстан от 18 сентября 2009 года "О здоровье народа и системе здравоохранения", ПРИКАЗЫВАЮ:

- 1. Утвердить прилагаемые гигиенические нормативы "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности".
- 2. Комитету по защите прав потребителей Министерства национальной экономики Республики Казахстан обеспечить в установленном законодательством порядке:
- 1) государственную регистрацию настоящего приказа в Министерстве юстиции Республики Казахстан;
- 2) в течение десяти календарных дней после государственной регистрации настоящего приказа его направление на официальное опубликование в периодических печатных изданиях и в информационно-правовой системе "Эділет";
- 3) размещение настоящего приказа на официальном интернет-ресурсе Министерства национальной экономики Республики Казахстан.
- 3. Контроль за исполнением настоящего приказа возложить на курирующего вице-министра национальной экономики Республики Казахстан.
- 4. Настоящий приказ вводится в действие по истечении десяти календарных дней со дня его первого официального опубликования.

Министр

национальной экономики

Республики Казахстан

Е. Досаев

"СОГЛАСОВАН"

Министр здравоохранения и социального развития Республики Казахстан
\_\_\_\_\_ Т. Дуйсенова 4 марта 2015 года "СОГЛАСОВАН" Министр энергетики Республики Казахстан
\_\_\_\_\_ В. Школьник 10 марта 2015 года

Утверждены приказом Министра национальной экономики Республики Казахстан от 27 февраля 2015 года № 155

#### Гигиенические нормативы

"Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### 1. Общие положения

- 1. Настоящие гигиенические нормативы "Санитарно- эпидемиологические требования к обеспечению радиационной безопасности" (далее нормативы) предназначены для юридических и физических лиц не зависимо от форм собственности, ведомственной принадлежности организационно-правовых форм, а также для местных исполнительных органов власти, граждан Республики Казахстан, иностранных граждан и лиц без гражданства, проживающих на территории Республики Казахстан деятельность которых связана с обращением источников ионизирующего излучения, для обеспечения радиационной безопасности.
- 2. Нормативы применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения и являются основополагающим документом, регламентирующим требования Закона Республики Казахстан "О радиационной безопасности населения" в форме основных пределов доз, допустимых уровней воздействия ионизирующего излучения и других требований по ограничению облучения человека.
- 3. Физические и юридические лица, несут ответственность за нарушение требований обеспечения радиационной безопасности, в соответствии с Кодексом Республики Казахстан "Об административных правонарушениях" и Законом Республики Казахстан "О радиационной безопасности населения".

- 4. В настоящих гигиенических нормативах использованы следующие понятия
- 1) активность минимально значимая (далее МЗА) активность открытого или закрытого источника ионизирующего излучения при превышении которой источник подлежит учету и контролю и для которого требуется санитарно-эпидемиологическое заключение, выдаваемое в соответствии с пунктом 8 статьи 62 Кодекса Республики Казахстан от 18 сентября 2009 года "О здоровье народа и системе здравоохранения" (далее Кодекс);
- 2) активность минимально значимая удельная (далее МЗУА) удельная активность открытого источника ионизирующего излучения при превышении которой источник подлежит учету и контролю и для которого требуется санитарно-эпидемиологическое заключение, выдаваемое в соответствии с пунктом 8 статьи 62 Кодекса;
- 3) персонал лица, работающие с техногенными источниками ионизирующего излучения (группа A) или находящиеся по условиям работы в сфере их воздействия (группа Б).
- 5. Нормативы распространяются на следующие виды воздействия ионизирующего излучения на человека:
  - 1) в условиях нормальной эксплуатации техногенных источников излучения;
  - 2) в результате радиационной аварии;
  - 3) от природных источников излучения;
  - 4) при медицинском облучении.

Требования по обеспечению радиационной безопасности сформулированы для каждого вида облучения. Суммарная доза от всех видов облучения используется для оценки радиационной обстановки и ожидаемых медицинских последствий, а также для обоснования защитных мероприятий и оценки их эффективности.

- 6. Требования нормативов не распространяются на источники излучения, создающие при любых условиях обращения с ними:
- 1) индивидуальную годовую эффективную дозу не более 10 микрозиверт ( далее мкЗв);
- 2) индивидуальную годовую эквивалентную дозу в коже не более 50 миллизиверт (далее мЗв) и в хрусталике не более 15 мЗв;
- 3) коллективную эффективную годовую дозу не более 1 человеко-зиверта ( далее чел-Зв), либо когда при коллективной дозе более 1 чел-Зв оценка по принципу оптимизации показывает нецелесообразность снижения коллективной дозы.

Требования нормативов не распространяются также на космическое излучение на поверхности земли и внутреннее облучение человека, создаваемое природным калием, на которые практически невозможно влиять.

- 7. Для обоснования расходов на радиационную защиту при реализации принципа оптимизации принимается, что облучение в коллективной эффективной дозе в 1 чел-Зв приводит к потенциальному ущербу, равному потере примерно 1 чел-Зв года жизни населения. Величина денежного эквивалента потери 1 чел-Зв года жизни устанавливается в размере не менее 1 годового душевого национального дохода.
- 8. Индивидуальный и коллективный пожизненный риск возникновения стохастических эффектов определяется соответственно.

$$\begin{split} r_{ic} &= \int\limits_{0}^{\infty} p_{i}(E) \times r_{F} \times E \ dE; \\ R &= \sum_{i=1}^{N} r_{ic} \end{split}$$

где: r,

R – индивидуальный и коллективный пожизненный риск соответственно;

Е – индивидуальная эффективная доза;

 $p_i(E)dE$ , — вероятность для i-го индивидуума получить годовую эффективную дозу от E до E+dE;

 $r_{\rm E}$  – коэффициент пожизненного риска сокращения длительности периода полноценной жизни в среднем на 15 лет на один стохастический эффект (от смертельного рака, серьезных наследственных эффектов и не смертельного рака, приведенного по вреду к последствиям от смертельного рака), равный:

| для производственного облучения: | $r_{\rm E} = 5,6{\rm x}10^{-2}$ 1/ чел-3в при E < 200 миллизиверт в год (далее – м3в/год); $r_{\rm E} = 1,1{\rm x}10^{-1}$ 1/ чел-3в при E $^3$ 200 м3в/год; |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| для облучения населения:         | $r_{\rm E}$ = 7,3x10 <sup>-2</sup> 1/ чел-3в при E < 200 мЗв/год;<br>$r_{\rm E}$ = 1,5x10 <sup>-1</sup> 1/ чел-3в при E і 200 мЗв/год.                       |

9. Для целей радиационной безопасности при облучении в течение года индивидуальный риск сокращения длительности периода полноценной жизни в результате возникновения тяжелых последствий от детерминированных эффектов консервативно принимается равным:

где:  $P_i[D>Д]$ , — вероятность для i-го индивидуума быть облученным с дозой больше Д при обращении с источником в течение года;

Д – пороговая доза для детерминированного эффекта.

10. Для наиболее полной оценки вреда, который может быть нанесен здоровью в результате облучения в малых дозах, используется понятие радиационного ущерба, количественно учитывающего как эффекты облучения отдельных органов и тканей тела, отличающиеся радиочувствительностью к ионизирующему излучению, так и всего организма в целом. В соответствии с общепринятой линейной беспороговой теорией зависимости риска стохастических эффектов от дозы, величина риска пропорциональна дозе излучения и связана с дозой через линейные коэффициенты радиационного риска, в соответствии с приложением 1 к настоящим нормативам.

Усредненная величина коэффициента риска, используемая для установления пределов доз персонала и населения, принята равной 0,05 3в<sup>-1</sup>.

В условиях нормальной эксплуатации ядерных радиационных и электрофизических установок пределы доз техногенного облучения в течении года устанавливаются исходя из следующих значений индивидуального пожизненного радиационного риска для персонала  $1 \times 10^{-3}$  и для населения  $5 \times 10^{-5}$ . Уровень пренебрежимо малого риска составляет  $10^{-6}$ .

При обосновании защиты от источников потенциального облучения в течение года принимаются следующие значения обобщенного риска ( произведение вероятности события, приводящего к облучению, и вероятности смерти, связанной с облучением):персонал  $2,0x10^{-4}$ , год<sup>-1</sup>; население  $1,0x10^{-5}$ , год<sup>-1</sup>.

# 2. Нормативы к ограничению техногенного облучения в контролируемых условиях

- 11. Для категорий облучаемых лиц (персонал группы "А", "Б" и население) устанавливаются три класса нормативов:
  - 1) основные пределы доз (далее ПД);
- 2) допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз: предел годового поступления (далее ПГП), допустимые среднегодовые объемные активности (далее ДОА), среднегодовые удельные активности (далее ДУА), мощность эквивалентной дозы (далее МЭД);

- 3) контрольные уровни (дозы, уровни, активности, плотности потоков. Их значения учитывают достигнутый в организации уровень радиационной безопасности и обеспечивают условия, при которых радиационное воздействие будет ниже допустимого.
- 12. Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.
- 13. Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, для населения за период жизни (70 лет) 70 мЗв.
- 14. Администрация предприятия переводит беременную женщину на работу, не связанную с источниками излучения, со дня получения информации о факте беременности, на период беременности и грудного вскармливания ребенка.
- 15. Годовая эффективная доза облучения персонала за счет нормальной эксплуатации техногенных источников ионизирующего излучения не должна превышать ПД, установленных в приложении 2 к настоящим нормативам.

Под годовой эффективной дозой понимается сумма эффективной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

16. Значения дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала, поступление радионуклидов через органы дыхания и среднегодовая объемная активность их во вдыхаемом воздухе не должны превышать числовых значений ПГП и ДОА, приведенных в приложениях 21 и 22 к настоящими нормативам, где пределы доз взяты равными 20 мЗв в год для персонала и 1 мЗв в год для населения.

В нестандартных условиях допустимые уровни МЭД, среднегодовая ДОА персонала и ЭРОА радона определяются расчетным путем с учетом времени пребывания персонала в радиационно-опасной зоне. Приведенные в приложениях 21 и 22 значения дозовых коэффициентов, а также величин ПГП персонала, ПГП населения, ДОА персонала и ДОА населения (далее – ПГП перс, ПГП нас, ДОА перс и ДОА дозовых коэффициентов, а также величин ПГП перс, ПГП нас, ДОА перс и ДОА дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ПГП перс, ПГП нас, дозовых коэффициентов, а также величин ППП нас, дозовых коэффициентов, а также величин ППП нас, дозовых коэффициентов, а также величин ППП нас, до

17. Для персонала группы A значения ПГП и ДОА дочерних продуктов распада изотопов радона ( $^{222}$ Rn и  $^{220}$ Rn) -  $^{218}$ Po (RaA),  $^{214}$ Pb (RaB),  $^{214}$ Bi (RaC),

 $^{212}$ Pb (ThB),  $^{212}$ Bi (ThC) в единицах эквивалентной равновесной активности (для ПГП) и эквивалентной равновесной объемной активности (для ДОА) составляют:

ПГП: 
$$0,10$$
  $\Pi_{RaA} + 0,52$   $\Pi_{RaB} + 0,38$   $\Pi_{RaC} = 3,0$  МБк  $0,91$   $\Pi_{ThB} + 0,09$   $\Pi_{ThC} = 0,68$  МБк ДОА:  $0,10$   $A_{RaA} + 0,52$   $A_{RaB} + 0,38$   $A_{RaC} = 1200$  Бк/м $^3$   $0,91$   $A_{ThB} + 0,09$   $A_{ThC} = 270$  Бк/м $^3$ ,

 $\Pi_{i}$  и  $A_{i}$  – годовые поступления и среднегодовые объемные активности в зоне дыхания соответствующих дочерних продуктов изотопов радона.

- 18. Для студентов и учащихся старше 16 лет, проходящих профессиональное обучение с использованием источников излучения, годовые дозы не должны превышать значений, установленных для персонала группы Б.
- 19. Планируемое повышенное облучение персонала группы А при ликвидации или предотвращении аварии допускается только в случае необходимости спасения людей и (или) предотвращения их облучения. Планируемое повышенное облучение допускается для мужчин старше 30 лет лишь при их добровольном письменном согласии, после информирования о возможных дозах облучения и риске для здоровья.
- 20. Планируемое повышенное облучение в эффективной дозе до 100 мЗв в год и эквивалентных дозах не более двукратных значений, приведенных в приложении 2 настоящих нормативов, допускается при согласовании с территориальным подразделением ведомства государственного органа в сфере санитарно-эпидемиологического благополучия населения (не ниже областного уровня), облучение в эффективной дозе до 200 мЗв в год и четырехкратных значений эквивалентных доз допускается с разрешения Главного государственного санитарного врача Республики Казахстан.
  - 21. Повышенное облучение не допускается:
- 1) для работников, ранее уже облученных в течение года в результате аварии или запланированного повышенного облучения с эффективной дозой 200 мЗв или с эквивалентной дозой, превышающей в четыре раза соответствующие пределы доз;
- 2) для лиц, имеющих медицинские противопоказания для работы с источниками излучения.
- 22. Лица, подвергшиеся облучению в эффективной дозе, превышающей 100 мЗв в течение года, при дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв за год.

Облучение эффективной дозой свыше 200 мЗв в течение года рассматривается как потенциально опасное. Лица, подвергшиеся такому облучению, немедленно выводятся из зоны облучения и направляются на медицинское обследование. Последующая работа с источниками излучения этим лицам разрешается в индивидуальном порядке с учетом их согласия по решению компетентной медицинской комиссии.

23. Лица, не относящиеся к персоналу, привлекаемые для проведения аварийных, спасательных и других работ, осуществляемых на радиоактивно загрязненных территориях, оформляются и допускаются к работам как персонал группы А.

## 3. Нормативы к защите от природного облучения в производственных условиях

- 24. Эффективная доза облучения природными источниками излучения всех работников, включая персонал, не должна превышать 5 мЗв в год в производственных условиях (любые профессии и производства).
- 25. Средние значения радиационных факторов в течение года, соответствующие при монофакторном воздействии эффективной дозе 5 мЗв за год при продолжительности работы 2000 часов в год (далее ч/год), средней скорости дыхания 1,2 кубический метр в час (далее м<sup>3</sup>/ч) и радиоактивном равновесии радионуклидов уранового и ториевого рядов в производственной пыли, составляют:
- 1) мощность эффективной дозы гамма-излучения на рабочем месте 2,5 микрозиверт час (далее мкЗв/ч);
- 2) Эквивалентная равновесная объемная активность (далее  ${\rm ЭPOA_{Rn}}$ ) в воздухе зоны дыхания 310 беккерель на кубический метр (далее  ${\rm Бк/m}^3$ );
  - 3)  ${\rm 3POA_{Tn}}$  в воздухе зоны дыхания 68 Бк/м<sup>3</sup>;
- 4) удельная активность в производственной пыли урана-238, находящегося в радиоактивном равновесии с членами своего ряда 40/f килобеккерел на килограмм (далее кБк/кг), где f среднегодовая общая запыленность воздуха в зоне дыхания, миллиграмм на кубический метр (далее мг/м $^3$ );
- 5) удельная активность в производственной пыли тория-232, находящегося в радиоактивном равновесии с членами своего ряда, 27/f, кБк/кг.

При многофакторном воздействии сумма отношений воздействующих факторов к указанным значениям не должна превышать 1.

26. При выборе участков территорий под строительство зданий и сооружений производственного назначения, отводятся участки с гамма-фоном не 0,6 мкЗв/ч,

- а плотность потока радона с поверхности грунта 250 миллибеккерель на квадратный метр в секунду (далее м $\text{Б} \text{к}/(\text{м}^2*\text{c})$ .
- 27. Воздействие космических излучений на экипажи самолетов нормируется как природное облучение в производственных условиях и не должно превышать 5 мЗв в год.

# 4. Нормативы к ограничению техногенного и природного облучения населения в нормальных условиях

- 28. Допустимые значения содержания радионуклидов в пищевых продуктах, питьевой воде и атмосферном воздухе, соответствующие пределу дозы техногенного облучения населения 1 мЗв/год и квотам от этого предела, рассчитываются на основании значений дозовых коэффициентов при поступлении радионуклидов через органы пищеварения с учетом их распределения по компонентам рациона питания и питьевой воде, а также с учетом поступления радионуклидов через органы дыхания и внешнего облучения людей. Значения дозовых коэффициентов для критических групп населения, ДОА и ПГП через органы дыхания и ПГП через органы пищеварения, приведены в приложении 23 к настоящим нормативам.
- 29. При проектировании новых зданий жилого и общественного назначения предусматривается, чтобы среднегодовая  $\mathrm{ЭPOA}_{\mathrm{Rn}}$  дочерних продуктов радона и торона в воздухе помещений  $\mathrm{ЭPOA}_{\mathrm{Rn}}$  + 4,6  $\mathrm{ЭPOA}_{\mathrm{Tn}}$  не превышала 100 Бк/м<sup>3</sup>, а мощность эффективной дозы гамма-излучения не превышала мощность дозы на открытой местности более чем на 0,2 мкЗв/ч.
- 30. В эксплуатируемых зданиях среднегодовая ЭРОА<sub>Rn</sub> дочерних продуктов радона и торона в воздухе жилых помещений не должна превышать 200 Бк/м<sup>3</sup>. При более высоких значениях объемной активности проводятся защитные мероприятия, направленные на снижение поступления радона в воздух помещений и улучшение вентиляции помещений. Защитные мероприятия проводятся также, если мощность эффективной дозы гамма-излучения в помещениях превышает мощность дозы на открытой местности более чем на 0,2 мкЗв/ч.
- 31. При выборе участков территорий под строительство жилых домов и зданий социально-бытового назначения отводятся участки с гамма-фоном не превышающим 0,3 мкГр/ч и плотностью потока радона с поверхности грунта не более 80 мБк/(м $^2$  х с);
- 32. Эффективная удельная активность  $(A_{9\varphi\varphi})$  природных радионуклидов в строительных материалах (щебень, гравий, песок, бутовый и пиленный камень,

цементное и кирпичное сырье и другие), добываемых на их месторождениях или являющихся побочным продуктом промышленности, а также отходы промышленного производства, используемые для изготовления строительных материалов (золы, шлаки), и готовой продукции не должна превышать:

1) для материалов, используемых в строящихся и реконструируемых жилых и общественных зданиях (I класс):

$$A_{s\phi\phi} = A_{Ra} + 1.3A_{Tk} + 0.09A_{K} \le 370E\kappa / \kappa \epsilon$$

где:

 $A_{Ra}$  и  $A_{Th}$  — удельные активности  $^{226}$ Ra и  $^{232}$ Th, находящихся в радиоактивном равновесии с остальными членами уранового и ториевого рядов,  $A_{K}$  — удельная активность K-40 (Бк/кг);

2) для материалов, используемых в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки. Для наружной отделки жилых, общественных и производственных зданий, фонтаны, культурные и другие сооружения при условии, что ожидаемая индивидуальная годовая эффективная доза облучения, при планируемом виде их использования не должна превышать 10 мкЗв, а годовая коллективная эффективная доза не должна превышать более одного чел-Зв. Не допускается использование для строительства и внутренней отделки жилых и общественных зданий, детских, подростковых, медицинских организаций (II класс):

3) для материалов, используемых в дорожном строительстве вне населенных пунктов (III класс):

$$A_{s\phi\phi} \leq 1500 E \kappa / \kappa \epsilon$$

4) при 1,5 кБк/кг <  $A_{9\varphi\varphi} \le 4,0$  кБк/кг (IV класс) вопрос об использовании материалов решается в каждом случае отдельно по согласованию с территориальным подразделением ведомства государственного органа в сфере санитарно-эпидемиологического благополучия.

При  $A_{9\varphi\varphi} > 4,0$  кБк/кг материалы не допускается использовать в строительстве.

33. Предварительная оценка допустимости использования воды для питьевых целей по показателям радиационной безопасности дается по удельной

суммарной альфа-  $(A_a)$  и бета-активности  $(A_b)$ . При значениях  $A_a$  и  $A_b$  ниже 0,2 и 1,0 Бк/кг, соответственно, дальнейшие исследования воды не являются обязательными. В случае превышения указанных уровней проводится анализ содержания радионуклидов в воде. Если при совместном присутствии в воде нескольких природных и техногенных радионуклидов выполняется условие:

 $\sum_{i} A_{i} / VB_{i} \leq 1$ 

где  $A_i$  – удельная активность і-го радионуклида в воде, Бк/кг;

 ${\rm YB}_{\rm i}$  — соответствующие уровни вмешательства значения дозовых коэффициентов

ε

(мЗв/Бк) при поступлении радионуклидов в организм взрослых людей с водой и уровни вмешательства УВ (Бк/кг) по содержанию отдельных радионуклидов в питьевой воде в соответствии с приложением 24 к настоящим нормативам, то мероприятия по снижению радиоактивности питьевой воды не являются обязательным.

34. Критическим путем облучения людей за счет <sup>222</sup>Rn, содержащегося в питьевой воде, является переход радона в воздух помещения и последующее ингаляционное поступление дочерних продуктов радона в организм. Уровень вмешательства для <sup>222</sup>Rn в питьевой воде составляет 60 Бк/кг. Определение удельной активности <sup>222</sup>Rn в питьевой воде из подземных источников при децентрализованном водоснабжении является обязательным.

При возможном присутствии в воде  $^3$ H,  $^{14}$ C,  $^{131}$ I,  $^{210}$ Pb,  $^{228}$ Ra,  $^{232}$ Th,  $^{232}$ U (в зонах наблюдения радиационных объектов I и II категории по потенциальной опасности) определение удельной активности этих радионуклидов в воде является обязательным.

- 35. Санитарно-эпидемиологическая экспертиза пищевого продукта и ограничение облучения населения осуществляется путем регламентации содержания допустимых уровней радионуклидов цезия-137 и стронция-90 в соответствии с приложением 25 к настоящим нормативам.
- 36. Содержание радионуклидов в чае (черный, зеленый, плиточный) не должно превышать по цезию 137 400 Бк/кг, стронцию 90 200 Бк/кг.
- 37. Содержание радионуклидов в кофе (в зернах, молотый, растворимый) не должно превышать по цезию 137 300 Бк/кг, стронцию 90 100 Бк/кг.

- 38. Содержание радионуклидов в БАД-ах на растительной основе, в том числе цветочная пыльца (сухие чаи), жидкие (эликсиры, бальзамы, настойки) не должно превышать по цезию 137 200 Бк/кг, стронцию 90 100 Бк/кг".
- 39. Содержание радионуклидов в лекарственных растениях (травы, кора, корневище, плоды) не превышает по цезию 137-400 Бк/кг, стронцию 90-200 Бк/кг.
- 40. Готовые к употреблению пищевые продукты из фруктов, овощей, ягод ( консервированные овощи, грибы, варенья, джемы, сиропы, концентраты, напитки, соки) проходят исследования на радиационную безопасность.
- 41. Содержание радионуклидов в табаке и табачных изделиях не должно превышать по цезию 137 120 Бк/кг, стронцию 90 50 Бк/кг.
  - 42. Оценка радиоактивности твердого топлива (уголь) включает:
- 1) показатели мощности дозы гамма-излучения и определение однородности участка. Участки месторождения (пласта) считаются однородными при разности значений мощности эквивалентной дозы гамма излучения не более 30 % на всей поверхности;
  - 2) удельную активность природных радионуклидов угля и золы.

Предварительная оценка радиоактивности твердого топлива производится на стадии разведки месторождения или поверхностной съемки территории для открытого карьера или пласта в забое скважины.

Индивидуальная годовая эффективная доза не должно превышать 10 мкЗв, а коллективная эффективная годовая доза – не более 1 чел-Зв.

Установление системы ограничений и вида безопасного использования топлива производится на основании анализа удельной активности природных радионуклидов. Сумма отношений удельной активности радионуклидов урана (радия) и тория к минимально значимым удельным активностям ( $C^{\text{уголь}}$ ), определяется по формуле:

$$C^{\gamma z z z z_0} = \frac{A_{U(Rz)}}{1000} + \frac{A_{Tk}}{1000}$$

где,

 $A_{U(Ra)}$ ,  $A_{Th}$  — удельная активность U ( $^{226}$ Ra),  $^{232}$ Th, находящихся в радиоактивном равновесии с остальными членами уранового и ториевого рядов, соответственно, Бк/кг.

 $1000 - {
m M3YA}$  природного урана и тория, Бк/кг.

В зависимости от значения С  $^{\text{уголь}}$  устанавливается класс радиационной опасности угля.

- 43. На объект недропользования по добыче твердого топлива при отводе земельного участка и при эксплуатации твердого топлива населением выдается санитарно-эпидемиологическое заключение в соответствии с пунктом 8 статьи 62 Кодекса.
- 44. Установление класса радиационной опасности золы и вида ее безопасного использования в качестве строительного материала осуществляется по показателю удельной эффективной активности.

Оценка и прогнозирование удельной эффективной активности золы, образующейся при сжигании топлива, могут быть проведены по результатам радиационных испытаний угля и определяется по формуле:

$$A^{zonz}_{\ z\phi\phi,\kappa\sigma\sigma z\kappa} = A^{yzons}_{\ z\phi\phi,X} x K_{K} + \Delta^{yzons}_{\ },$$

где,

 $A^{yronb}_{\ \ j\varphi\varphi}$  — удельная эффективная активность природных радионуклидов в пробе угля;

 $\Delta^{}_{}$   $_{}^{}$  уголь – абсолютная погрешность определения А  $^{}_{}^{}$  уголь  $_{}^{}$  эфф.

 ${\rm K}_{\rm K}$  – коэффициент концентрации радионуклидов в золе, определяется по формуле:

$$K_K = \frac{100\%}{A^d}$$

где,

 $A^{d}$  – зольность угля, %.

В зависимости от значения удельной активности устанавливается класс радиационной опасности и вид использования.

45. Технология разведки, добычи, транспортировки и переработки нефтяной и нефтеводяной суспензии не допускает возможность загрязнения естественными радионуклидами технологического оборудования и объектов окружающей среды выше уровней предусмотренных настоящими нормативами.

При содержании в нефти природных радионуклидов в количестве не более 10 уровней вмешательства (УВ) для воды (приложение 24) она используется без ограничения. При содержании радионуклидов более 10 уровней вмешательства для воды нефть допускается к переработке только после ее очистки до указанной величины (10 УВ).

- 46. Содержание естественных радионуклидов в пластовых водах, закачиваемых в нефтегазоностный горизонт в процессе добычи нефтепродуктов не нормируется. При закачке их в водоносные горизонты или сбросе на рельеф местности концентрации ЕРН в них не должно превышать 10 УВ для воды.
- 47. Удельная активность природных радионуклидов в минеральных удобрениях и агрохимикатах не должно превышать:

$$A_U + 1.5 \cdot A_{Tk} \le 1.0$$
  
 $\kappa E \kappa / \kappa e$ ,

где  $A_U$  и  $A_{Th}$  — удельные активности урана-238 (радия-226) и тория-232 (тория-228), находящихся в радиоактивном равновесии с остальными членами уранового и ториевого рядов, соответственно.

Допустимое содержание  $^{40}$ К в минеральных удобрениях и агрохимикатах не устанавливается. При обращении с материалами, содержащими  $^{40}$ К, соблюдаются требования по ограничению облучения населения за счет природных источников излучения, установленные в пунктах 26 и 27.

48. Удельная активность природных радионуклидов в фосфорных удобрениях и мелиорантах не должно превышать:

$$A_U + 1.5 \cdot A_{Tk} \le 4.0$$
  
 $\kappa E \kappa / \kappa \varepsilon$ ,

где  $A_U$  и  $A_{Th}$  – удельные активности урана-238 (радия-226) и тория-232 (тория-228), находящихся в радиоактивном равновесии с остальными членами уранового и ториевого рядов соответственно.

- 49. Для обеспечения радиационной безопасности населения и работников организаций и планирования видов и объема радиационного контроля при обращении с материалами с повышенным содержанием природных радионуклидов вводится следующая их классификация:
  - 1) І класс: А  $_{9 \oplus \phi} \leq 740 \text{ Бк/кг}$
  - 2) II класс:  $0.74 < A_{9 \phi \phi} \le 1.5 \text{ кБк/кг}$
  - 3) III класс: 1,5 < А  $_{9 dod} \le 4$ ,0 кБк/кг
  - 4) IV класс: А <sub>эфф</sub>і 4,0 кБк/кг
- 50. Обращение с материалами I класса в производственных условиях осуществляется без каких-либо ограничений.

При работе с материалами II, III, IV класса выдается санитарно-эпидемиологическое заключение, в соответствии с пунктом 8 статьи 62 Кодекса.

51. Предприятие до начала разработки месторождения строительных материалов, минеральных удобрений, мелиорантов и топливно-энергетического сырья получает санитарно-эпидемиологическое заключение о степени его радиационной опасности и условиях использования материалов в соответствии с пунктом 8 статьи 62 Кодекса.

#### 5. Норматив по ограничению медицинского облучения

- 52. Радиационная защита пациентов при медицинском облучении основывается на необходимости получения полезной диагностической информации и/или терапевтического эффекта от соответствующих медицинских процедур при наименьших уровнях облучения (для лучевой терапии это требование относится к здоровым, не намеренно облучаемым, органам и тканям). Для обеспечения радиационной защиты пациентов применяются принципы обоснования назначения медицинских процедур и оптимизации защиты пациентов. При проведении профилактических медицинских рентгенологических исследований и научных исследований практически здоровых лиц годовая эффективная доза облучения этих лиц не должно превышать 1 мЗв.
- 53. Лица (не персонал рентгенорадиологических отделений), оказывающие помощь в поддержке пациентов (тяжелобольных, детей) при выполнении рентгенорадиологических процедур, не должны подвергаться облучению в дозе, превышающей 5 мЗв в год. Такие же требования предъявляются к радиационной безопасности взрослых лиц, проживающих вместе с пациентами, прошедшими курс радионуклидной терапии или брахитерапии с имплантацией закрытых источников и выписанных из клиники. Для остальных взрослых лиц, а также для детей, контактирующих с пациентами, выписанными из клиники после радионуклидной терапии или брахитерапии, предел дозы составляет 1 мЗв в год.
- 54. Пациенты, проходящие курс радионуклидной терапии или брахитерапии с имплантацией закрытых источников, могут быть выписаны из клиники при условии, что уровень гамма излучения, испускаемого из тела, удовлетворяет требованиям пункта 60 настоящих нормативов. Выписка пациента после терапии радионуклидами, указанными в приложении 5 настоящих нормативов, допускается, если введенная или остаточная активность радионуклидов в теле или измеренная мощность дозы в воздухе вблизи тела пациента ниже соответствующих значений, приведенных в приложении 5 настоящих нормативов. Перед выпиской пациентам следует дать письменные и устные

инструкции относительно мер предосторожности, которые принимаются с тем, чтобы защитить от облучения членов семьи, с которыми они могут вступать в контакт. Такие же требования предъявляются к режиму амбулаторного лечения пациентов.

- 55. В случае смерти пациента, в организме которого находится кардиостимулятор с радионуклидным источником энергии, кремация тела проводится после удаления источника.
- 56. При планировании и проведении процедур, связанных с облучением ионизирующим излучением, в медицинской организации определяются и регистрируются дозы у всех лиц, подвергающихся медицинскому облучению.

### 6. Норматив по ограничению облучения населения в условиях радиационной аварии

- 57. Прогнозируемые уровни облучения, при которых необходимы защитные мероприятия проводятся, если предполагаемая доза излучения за короткий срок (2 суток) достигает уровней, при превышении которых возможны детерминированные эффекты (приложение 6 к настоящим нормативам).
- 58. При хроническом облучении в течение жизни защитные мероприятия обязательны, если годовые поглощенные дозы превышают уровни хронического облучения, создающие риск серьезных детерминированных эффектов указанных в приложении 7 к настоящим нормативам.
- 59. Уровни вмешательства для временного отселения населения составляют: для начала временного отселения 30 мЗв в месяц, для окончания временного отселения 10 мЗв в месяц. Если прогнозируется, что накопленная за один месяц доза будет находиться выше указанных уровней в течение года, следует решать вопрос об отселении населения на постоянное место жительства.
- 60. При проведении противорадиационных вмешательств, пределы доз (приложение 2 настоящих нормативов) не применяются.
- 61. При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии. В зоне радиационной аварии проводится контроль радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения.
- 62. Критерии для принятия неотложных решений в начальном периоде радиационной аварии и принятие решений о мерах защиты населения в случае крупной радиационной аварии приведены в приложении 8 к настоящим нормативам. Критерии для принятия решений об ограничении потребления

загрязненных продуктов питания в первый год после возникновения аварии, а также критерии для принятия решения об ограничении потребления загрязненных воды приведены в приложениях 9 и 10 к настоящим нормативам.

63. На поздних стадиях радиационной аварии, повлекшей за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально-экономических условий (приложение 26 к настоящим нормативам).

# 7. Значения допустимых уровней радиационного воздействия в нормальных условиях эксплуатации источников ионизирующего излучения

- 64. Для каждой категории облучаемых лиц значение допустимого уровня радиационного воздействия для данного пути облучения определено годовому пределу дозы (усредненному за пять лет), указанному в приложении 2 настоящих нормативов.
- 65. Значения допустимых уровней для всех путей облучения определены для стандартных условий, которые характеризуются следующими параметрами:
- 1) объемом вдыхаемого воздуха V, с которым радионуклид поступает в организм на протяжении календарного года;
  - 2) временем облучения t в течение календарного года;
  - 3) геометрией внешнего облучения потоками ионизирующего излучения.

Для персонала установлены следующие значения стандартных параметров: V  $_{\rm nepc} = 2,4$ х $10^3$  м $^3$  в год;  $t_{\rm nepc} = 1700$  ч в год;  $M_{\rm nepc} = 0$ . Для населения установлены следующие значения стандартных параметров:  $t_{\rm hac} = 8800$  ч в год;  $M_{\rm hac} = 730$  кг в год для взрослых. Годовой объем вдыхаемого воздуха установлен в зависимости от возраста:

- 66. Числовые значения среднегодовых допустимых плотностей потоков частиц при внешнем облучении всего тела, кожи и хрусталика глаза лиц из персонала моноэнергетическими электронами, бета-частицами, моноэнергетическими фотонами и моноэнергетическими нейтронами, значения допустимого радиоактивного загрязнения поверхностей рабочих помещений и находящегося в них оборудования, кожных покровов, специальной одежды, специальной обуви и других средств индивидуальной защиты персонала, допустимые уровни снимаемого радиоактивного загрязнения поверхности транспортных средств приведены в приложениях 12- 20 настоящих нормативов.
- 67. Значения среднегодовых допустимых плотностей потоков частиц даны для широкого диапазона энергий излучения и двух наиболее вероятных

геометрий облучения: изотропного (2р или 4р) поля излучения и падения параллельного пучка излучения на тело спереди (передне-задняя геометрия).

68. Для кожных покровов, специальной одежды и обуви, других средств индивидуальной защиты нормируется общее (снимаемое и не снимаемое) радиоактивное загрязнение. В остальных случаях нормируется только снимаемое загрязнение.

Уровни общего радиоактивного загрязнения кожных покровов определены с учетом проникновения доли радионуклида в кожу и в организм. Расчет проведен в предположении, что общая площадь загрязнения не должна превосходить 300 см<sup>2</sup>.

Приложение 1 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Линейные коэффициенты радиационного риска

| Облучаемая группа<br>населения | Коэффициент риска злокачественных новообразований, $x10^{-2} 3s^{-1}$ | Коэффициент риска наследственных эффектов, х10 <sup>-2</sup> 3в <sup>-1</sup> | Сумма,<br>х10 <sup>-2</sup> Зв <sup>-1</sup> |
|--------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|
| Все население                  | 5,5                                                                   | 0,2                                                                           | 5,7                                          |
| Взрослые                       | 4,1                                                                   | 0,1                                                                           | 4,2                                          |

Приложение 2 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Основные пределы доз

| 1)                                                                                                      | Пределы доз                                                                      |                                                                                |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Нормируемые величины <sup>1)</sup>                                                                      | персонал группы А <sup>2)</sup>                                                  | Население                                                                      |
| Эффективная доза                                                                                        | 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год | 1 м3в в год в среднем за любые последовательные 5 лет, но не более 5 м3в в год |
| Эквивалентная доза за год в:<br>хрусталике глаза <sup>3)</sup><br>коже <sup>4)</sup><br>кистях и стопах | 20 м3в<br>500 м3в<br>500 м3в                                                     | 15 м3в<br>50 м3в<br>50 м3в                                                     |

#### Примечание:

- 1) допускается одновременное облучение до указанных пределов по всем нормируемым величинам;
- 2) основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте

все нормативные значения для категории "персонал" приводятся только для группы А;

- 3) относится к дозе на глубине 300 миллиграмм на квадратный сантиметр ( далее  $\text{мг/cm}^2$ );
- 4) относится к среднему по площади в 1 квадратный сантиметр (далее  $\rm cm^2$ ) значению в базальном слое кожи толщиной 5 мг/см² под покровным слоем толщиной 5 мг/см². На ладонях толщина покровного слоя 40 мг/см². Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см² площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает не превышение предела дозы на хрусталик от бета-частиц.

Приложение 3 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Классы радиационной опасности угля

| Класс радиационной опасности угля | Сумма отношений удельной активности радионуклидов к МЗУА, С <sup>уголь</sup> | Условия использования угля                                                         |
|-----------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| I                                 | <u>&lt; 1</u>                                                                | Не вводится никаких ограничений на использование угля в хозяйственной деятельности |
| II                                | > 1                                                                          | Использование угля в хозяйственной деятельности не допускается                     |

Приложение 4 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Классы радиационной опасности золы

| Класс радиационной опасности золы | Удельная эффективная активность радионуклидов, $(A^{30лa}_{3\varphi\varphi}, \text{прогн } A^{30лa}_{3\varphi\varphi}) \text{ Бк/кг}$ | Условия безопасного использования золы                                                                                                                                 |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I                                 | до 370                                                                                                                                | Зола используется в строящихся и реконструируемых жилых и общественных зданиях                                                                                         |
| II                                | от 370 до 740                                                                                                                         | Зола используется в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки, а так же при возведении производственных сооружений |
|                                   |                                                                                                                                       |                                                                                                                                                                        |

| III | от 740-1500        | Зола используется в дорожном строительстве вне населенных пунктов                                                                                                                                           |
|-----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IV  | более 1500 до 4000 | Вопрос использования золы решается в каждом случае отдельно по согласованию с территориальным подразделением ведомства государственного органа в сфере санитарно-эпидемиологического благополучия населения |

Приложение 5 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Активность радионуклидов в теле взрослого пациента (ГБк) после радионуклидной терапии или брахитерапии с имплантацией закрытых источников и мощность эквивалентной дозы (мкЗв/ч) на расстоянии 1 м от поверхности тела, при которых разрешается выписка пациента из клиники

| Радионуклид         | Период полураспада,<br>сутки (далее – сут) | Активность в теле, ГБк | Мощность дозы, мкЗв/ч |
|---------------------|--------------------------------------------|------------------------|-----------------------|
| 125 <sub>I</sub> 1) | 60,1                                       | 4                      | 10                    |
| <sup>131</sup> I    | 8,0                                        | 0,4                    | 20                    |
| <sup>153</sup> Sm   | 2,0                                        | 9                      | 100                   |
| <sup>188</sup> Re   | 0,7                                        | 12                     | 80                    |

#### Примечание:

1) в составе имплантатов для брахитерапии предстательной железы.

В случае многократного лечения в течение года активность в теле и мощность дозы уменьшаются в число раз, равное числу курсов лечения за год.

Приложение 6 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

# Прогнозируемые уровни облучения, при которых необходимы защитные мероприятия

| Орган или ткань   | Поглощенная доза в органе или ткани за 2 суток, Гр |
|-------------------|----------------------------------------------------|
| Все тело          | 1                                                  |
| Легкие            | 6                                                  |
| Кожа              | 3                                                  |
| Щитовидная железа | 5                                                  |
| Хрусталик глаза   | 2                                                  |
| Гонады            | 3                                                  |

Приложение 7 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Уровни хронического облучения, создающие риск серьезных

детерминированных эффектов

| Орган или ткань      | Годовая поглощенная доза, Гр |
|----------------------|------------------------------|
| Гонады               | 0,2                          |
| Хрусталик глаза      | 0,1                          |
| Красный костный мозг | 0,4                          |

Приложение 8 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

# Критерии для принятия неотложных решений в начальном периоде радиационной аварии

| Предотвращаемая доза за первые 10 суток, мГр |             |           |                                        |                                          |
|----------------------------------------------|-------------|-----------|----------------------------------------|------------------------------------------|
| Меры защиты                                  | на все тело |           | щитовидная железа, легкие, кожа        |                                          |
|                                              | уровень А   | уровень Б | уровень А                              | уровень Б                                |
| Укрытие                                      | 5           | 50        | 50                                     | 500                                      |
| Йодная профилактика: взрослые дети           | -           | -         | 250 <sup>1)</sup><br>100 <sup>1)</sup> | 2500 <sup>1)</sup><br>1000 <sup>1)</sup> |
| Эвакуация                                    | 50          | 500       | 500                                    | 5000                                     |

#### Примечание:

1) только для щитовидной железы.

Приложение 9 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

#### Критерии для принятия решений

| Maria                                                                  | Предотвращаемая эффективная доза, мЗв       |                                               |  |
|------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|--|
| Меры                                                                   | уровень А                                   | уровень Б                                     |  |
| Ограничение потребления загрязненных пищевых продуктов и питьевой воды | 5 за первый год<br>1/год в последующие годы | 50 за первый год<br>10/год в последующие годы |  |
| Отполито                                                               | 50 за первый год                            | 500 за первый год                             |  |
| Отселение                                                              | 1000 за все время отселения                 |                                               |  |

#### Примечание:

Если уровень облучения, предотвращаемого защитным мероприятием не превосходит уровень A, меры защиты связанные с нарушением нормальной жизнедеятельности населения, а также хозяйственного и социального функционирования территории могут не проводиться.

Приложение 10 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Критерии для принятия решений об ограничении потребления загрязненных продуктов питания в первый год после возникновения аварии

| Do писотписти и и                                       | Удельная активность радионуклида в пищевых продуктах, кБк/кг |           |
|---------------------------------------------------------|--------------------------------------------------------------|-----------|
| Радионуклиды                                            | уровень А                                                    | уровень Б |
| <sup>131</sup> I, <sup>134</sup> Cs, <sup>137</sup> Cs  | 1                                                            | 10        |
| 90Sr                                                    | 0,1                                                          | 1,0       |
| <sup>238</sup> Pu, <sup>239</sup> Pu, <sup>241</sup> Am | 0,01                                                         | 0,1       |

#### Примечание:

Если предотвращаемое защитным мероприятием облучение превосходит уровень A, но не достигает уровня Б, решение о выполнении мер защиты принимается по принципам обоснования и оптимизации с учетом конкретной обстановки и местных условий.

Если уровень облучения, предотвращаемого достигает и превосходит уровень Б выполняются соответствующие меры защиты, даже если они связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории.

Приложение 11 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Годовой объем вдыхаемого воздуха для разных возрастных групп населения

| Возраст, лет                 | до 1 | 1-2 | 2-7 | 7-12 |     | Взрослые<br>(старше 17<br>лет) |
|------------------------------|------|-----|-----|------|-----|--------------------------------|
| V, тыс. м <sup>3</sup> в год | 1,0  | 1,9 | 3,2 | 5,2  | 7,3 | 8,1                            |

Приложение 12 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических электронов для лиц из персонала при облучении кожи

| Энергия электронов , МэВ | 10-10 Зв          |                  | Среднегодовая допустимая плотность потока ДПП $_{\rm nepc}$ , см $^{-2}$ $_{\rm c}^{-1}$ |                  |
|--------------------------|-------------------|------------------|------------------------------------------------------------------------------------------|------------------|
|                          | изо <sup>1)</sup> | ПЗ <sup>2)</sup> | ИЗО <sup>1)</sup>                                                                        | ПЗ <sup>2)</sup> |
| 0,07                     | 0,3               | 2,2              | 2700                                                                                     | 370              |
| 0,10                     | 5,7               | 16,6             | 140                                                                                      | 50               |
| 0,20                     | 5,6               | 8,3              | 150                                                                                      | 100              |
| 0,40                     | 4,3               | 4,6              | 190                                                                                      | 180              |
| 0,70                     | 3,7               | 3,4              | 220                                                                                      | 240              |
| 1,00                     | 3,5               | 3,1              | 230                                                                                      | 260              |
| 2,00                     | 3,2               | 2,8              | 260                                                                                      | 290              |
| 4,00                     | 3,2               | 2,7              | 260                                                                                      | 300              |
| 7,00                     | 3,2               | 2,7              | 260                                                                                      | 300              |
| 10,0                     | 3,2               | 2,7              | 260                                                                                      | 300              |

<sup>1)</sup>ИЗО – изотропное (2

 $\pi$  ) поле излучения,  $^{2)}\Pi 3$  — облучение параллельным пучком в передне-задней геометрии.

Приложение 13 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических электронов для лиц из персонала при облучении хрусталиков глаз

| Энергия электронов , МэВ | единичный флюенс, 10 <sup>-10</sup> 3в |                  | Среднегодовая допустимая плотность потока ДПП $_{\rm nepc}$ , см $^{-2}$ $_{\rm c}^{-1}$ |                  |
|--------------------------|----------------------------------------|------------------|------------------------------------------------------------------------------------------|------------------|
|                          | ИЗО <sup>1)</sup>                      | ПЗ <sup>1)</sup> | изо1)                                                                                    | ПЗ <sup>1)</sup> |
| 0,80                     | 0,08                                   | 0,45             | 3100                                                                                     | 540              |
| 1,00                     | 0,75                                   | 3,0              | 330                                                                                      | 80               |
| 1,50                     | 1,9                                    | 5,2              | 130                                                                                      | 50               |
| 2,00                     | 2,2                                    | 4,8              | 110                                                                                      | 50               |
| 4,00                     | 2,6                                    | 3,3              | 95                                                                                       | 75               |
| 7,00                     | 2,9                                    | 3,1              | 85                                                                                       | 80               |
| 10,0                     | 3,0                                    | 3,0              | 80                                                                                       | 80               |

Примечание:

1) ИЗО – изотропное (2

```
) поле излучения, ПЗ – облучение параллельным пучком в передне-задней
геометрии.
   Флюенс частиц \Phi – отношение dN/d
α
, где dN – количество частиц, падающих на сферу с площадью поперечного
сечения d
α
   \Phi = dN/d
, M^{-2}
   Плотность потока частиц n – отношение dN/(d
α
dt), где dN – количество частиц, падающих на сферу с площадью поперечного
сечения d
за интервал времени dt:
   n=dN/(d
α
dt),M^{-2}
```

Приложение 14 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения эквивалентной дозы и среднегодовые допустимые плотности потока бета-частиц для лиц из персонала при контактном облучении кожи

| Средняя энергия бета-спектра, МэВ | Эквивалентная доза в коже на единичный флюенс, $10^{-10}$ Зв - $\text{cm}^2$ | Среднегодовая допустимая плотность потока ДПП $_{\rm nepc}$ , см $^{-2}$ $_{\rm c}^{-1}$ |
|-----------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 0,05                              | 1,0                                                                          | 820                                                                                      |
| 0,07                              | 1,8                                                                          | 450                                                                                      |
| 0,10                              | 2,6                                                                          | 310                                                                                      |
| 0,15                              | 3,4                                                                          | 240                                                                                      |
| 0,20                              | 3,8                                                                          | 215                                                                                      |
| 0,30                              | 4,3                                                                          | 190                                                                                      |
| 0,40                              | 4,5                                                                          | 180                                                                                      |
| 0,50                              | 4,6                                                                          | 180                                                                                      |
| 0,70                              | 4,8                                                                          | 170                                                                                      |
|                                   |                                                                              |                                                                                          |

| 1,00 | 5,0 | 165 |
|------|-----|-----|
| 1,50 | 5,2 | 160 |
| 2,00 | 5,3 | 155 |

Приложение 15 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

# Значения эффективной дозы и среднегодовые допустимые плотности потока моноэнергетических фотонов для лиц из персонала

при внешнем облучении всего тела

| Энергия<br>фотонов, МэВ | флюенс,<br>10 <sup>-12</sup> Зв |                  | Среднегодовая допустимая плотность потока, ДПП $_{\rm nepc}$ , $_{\rm cm}^{-2}$ $_{\rm c}^{-1}$ |                  | Керма в воздухе на единичный флюенс, $10^{-12}  \Gamma \text{p}$ |
|-------------------------|---------------------------------|------------------|-------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|
|                         | изо1)                           | ПЗ <sup>2)</sup> | изо <sup>1)</sup>                                                                               | ПЗ <sup>2)</sup> | см <sup>2</sup>                                                  |
| 1,0-2                   | 0,0201                          | 0,0485           | 1,63+05                                                                                         | 6,77+04          | 7,43                                                             |
| 1,5-2                   | 0,0384                          | 0,125            | 8,73+04                                                                                         | 2,62+04          | 3,12                                                             |
| 2,0-2                   | 0,0608                          | 0,205            | 5,41+04                                                                                         | 1,62+04          | 1,68                                                             |
| 3,0-2                   | 0,103                           | 0,300            | 3,24+04                                                                                         | 1,08+04          | 0,721                                                            |
| 4,0-2                   | 0,140                           | 0,338            | 2,31+04                                                                                         | 9,65+03          | 0,429                                                            |
| 5,0-2                   | 0,165                           | 0,357            | 1,99+04                                                                                         | 9,12+03          | 0,323                                                            |
| 6,0-2                   | 0,186                           | 0,378            | 1,77+04                                                                                         | 8,63+03          | 0,289                                                            |
| 8,0-2                   | 0,230                           | 0,440            | 1,42+04                                                                                         | 7,44+03          | 0,307                                                            |
| 1,0-1                   | 0,278                           | 0,517            | 1,18+04                                                                                         | 6,33+03          | 0,371                                                            |
| 1,5-1                   | 0,419                           | 0,752            | 7,79+03                                                                                         | 4,33+03          | 0,599                                                            |
| 2,0-1                   | 0,581                           | 1,00             | 5,61+03                                                                                         | 3,28+03          | 0,856                                                            |
| 3,0-1                   | 0,916                           | 1,51             | 3,54+03                                                                                         | 2,17+03          | 1,38                                                             |
| 4,0-1                   | 1,26                            | 2,00             | 2,59+03                                                                                         | 1,63+03          | 1,89                                                             |
| 5,0-1                   | 1,61                            | 2,47             | 2,02+03                                                                                         | 1,32+03          | 2,38                                                             |
| 6,0-1                   | 1,94                            | 2,91             | 1,69+03                                                                                         | 1,12+03          | 2,84                                                             |
| 8,0-1                   | 2,59                            | 3,73             | 1,26+03                                                                                         | 8,73+02          | 3,69                                                             |
| 1,0                     | 3,21                            | 4,48             | 1,01+03                                                                                         | 7,33+02          | 4,47                                                             |
| 2,0                     | 5,84                            | 7,49             | 5,63+02                                                                                         | 4,38+02          | 7,55                                                             |
| 4,0                     | 9,97                            | 12,0             | 3,28+02                                                                                         | 2,73+02          | 12,1                                                             |
| 6,0                     | 13,6                            | 16,0             | 2,38+02                                                                                         | 2,05+02          | 16,1                                                             |
| 8,0                     | 17,3                            | 19,9             | 1,89+02                                                                                         | 1,64+02          | 20,1                                                             |
| 10,0                    | 20,8                            | 23,8             | 1,56+02                                                                                         | 1,38+02          | 24,0                                                             |

Примечание:

<sup>&</sup>lt;sup>1)</sup>ИЗО – изотропное (4

) поле излучения,  $^{2)}\Pi 3$  — облучение параллельным пучком в передне-задней геометрии.

Керма — отношение суммы начальных кинетических энергий  ${\rm dE}_{\rm k}$  всех заряженных ионизирующих частиц, образовавшихся под действием косвенно ионизирующего излучения в элементарном объеме вещества, к массе  ${\rm dm}$  вещества в этом объеме:

$$K = \frac{dE_k}{dm}$$

Единица кермы - грей (Гр).

Керма и поглощенная доза равны друг другу в той степени, с какой достигается равновесие заряженных частиц и с какой можно пренебречь тормозным излучением и ослаблением потока фотонов на пути пробега вторичных электронов.

Приложение 16 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических фотонов для лиц из персонала

при облучении кожи

| Энергия<br>фотонов, МэВ | Эквивалентна флюенс, 10 <sup>-12</sup> Зв - cм <sup>2</sup> | флюенс,<br>10 <sup>-12</sup> Зв |                   | я допустимая плотность ре, см <sup>-2</sup> |
|-------------------------|-------------------------------------------------------------|---------------------------------|-------------------|---------------------------------------------|
|                         | изо1)                                                       | ПЗ <sup>1)</sup>                | изо <sup>1)</sup> | ПЗ <sup>1)</sup>                            |
| 1,0-2                   | 6,17                                                        | 7,06                            | 1,31+04           | 1,16+04                                     |
| 2,0-2                   | 1,66                                                        | 1,76                            | 4,96+04           | 4,63+04                                     |
| 3,0-2                   | 0,822                                                       | 0,880                           | 1,00+05           | 9,25+04                                     |
| 5,0-2                   | 0,462                                                       | 0,494                           | 1,81+05           | 1,63+05                                     |
| 1,0-1                   | 0,549                                                       | 0,575                           | 1,50+05           | 1,42+0,5                                    |
| 1,5-1                   | 0,827                                                       | 0,851                           | 9,74+04           | 9,74+04                                     |
| 3,0-1                   | 1,79                                                        | 1,81                            | 4,53+04           | 4,53+04                                     |
| 4,0-1                   | 2,38                                                        | 2,38                            | 3,38+04           | 3,38+04                                     |
| 5,0-1                   | 2,93                                                        | 2,93                            | 2,80+04           | 2,80+04                                     |
| 6,0-1                   | 3,44                                                        | 3,44                            | 2,40+04           | 2,40+04                                     |
| 8,0-1                   | 4,39                                                        | 4,39                            | 1,88+04           | 1,88+04                                     |
| 1,0                     | 5,23                                                        | 5,23                            | 1,55+04           | 1,55+04                                     |
| 2,0                     | 8,61                                                        | 8,61                            | 9,57+03           | 9,57+03                                     |

| 4,0  | 13,6 | 13,6 | 6,08+03 | 6,08+03 |
|------|------|------|---------|---------|
| 6,0  | 17,9 | 17,9 | 4,57+03 | 4,57+03 |
| 8,0  | 22,3 | 22,3 | 3,66+03 | 3,66+03 |
| 10,0 | 26,4 | 26,4 | 3,13+03 | 3,13+03 |

ИЗО<sup>1)</sup> – изотропное (2

) поле излучения, ПЗ – облучение параллельным пучком в передне-задней геометрии.

Приложение 17 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических фотонов для лиц из персонала при облучении хрусталиков глаз

| Энергия фотонов,<br>МэВ | единичный флюенс,<br>10 <sup>-12</sup> Зв |                  | Среднегодовая допустимая плотность потока ДПП $_{\rm nepc}$ , см $^{-2}$ |                  |
|-------------------------|-------------------------------------------|------------------|--------------------------------------------------------------------------|------------------|
|                         |                                           |                  | c <sup>-1</sup>                                                          |                  |
|                         | ИЗО <sup>1)</sup>                         | ПЗ <sup>1)</sup> | изо1)                                                                    | ПЗ <sup>1)</sup> |
| 1,0-2                   | 0,669                                     | 2,23             | 3,66+04                                                                  | 1,08+04          |
| 1,5-2                   | 0,749                                     | 2,06             | 3,29+04                                                                  | 1,16+04          |
| 2,0-2                   | 0,622                                     | 1,53             | 3,97+04                                                                  | 1,60+04          |
| 3,0-2                   | 0,375                                     | 0,865            | 6,55+04                                                                  | 2,85+04          |
| 4,0-2                   | 0,275                                     | 0,571            | 9,07+04                                                                  | 4,27+04          |
| 5,0-2                   | 0,239                                     | 0,459            | 1,03+05                                                                  | 5,33+04          |
| 6,0-2                   | 0,234                                     | 0,431            | 1,06+05                                                                  | 5,67+04          |
| 8,0-2                   | 0,264                                     | 0,476            | 9,05+04                                                                  | 5,16+04          |
| 1,0-1                   | 0,326                                     | 0,568            | 7,26+04                                                                  | 4,34+04          |
| 1,5-1                   | 0,545                                     | 0,857            | 4,59+04                                                                  | 2,88+04          |
| 2,0-1                   | 0,762                                     | 1,16             | 3,31+04                                                                  | 2,11+04          |
| 3,0-1                   | 1,20                                      | 1,77             | 2,09+04                                                                  | 1,39+04          |
| 4,0-1                   | 1,59                                      | 2,33             | 1,54+04                                                                  | 1,06+04          |
| 5,0-1                   | 2,00                                      | 2,86             | 1,24+04                                                                  | 8,64+03          |
| 6,0-1                   | 2,39                                      | 3,32             | 1,04+04                                                                  | 7,34+03          |
| 8,0-1                   | 3,10                                      | 4,21             | 7,90+03                                                                  | 5,87+03          |
| 1,0                     | 3,76                                      | 4,96             | 6,53+03                                                                  | 4,91+03          |
| 2,0                     | 6,64                                      | 7,93             | 3,68+03                                                                  | 3,09+03          |
| 4,0                     | 11,1                                      | 12,1             | 2,20+03                                                                  | 2,00+03          |
| 6,0                     | 15,1                                      | 15,6             | 1,62+03                                                                  | 1,57+03          |

| 8,0  | 19,1 | 19,1 | 1,29+03 | 1,29+03 |
|------|------|------|---------|---------|
| 10,0 | 23,0 | 22,3 | 1,06+03 | 1,10+03 |

 $И3O^{1)}$  – изотропное (4

) поле излучения, ПЗ – облучение параллельным пучком в передне-задней геометрии.

Приложение 18 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения эффективной дозы и среднегодовые допустимые плотности потока моноэнергетических нейтронов для лиц из персонала при внешнем облучении всего тела

|                    |                                                                                                                                                      | Среднегодовая допустимая плотность потока, ДПП перс, см-2 - c-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13O <sup>1)</sup>  | ПЗ <sup>1)</sup>                                                                                                                                     | изо <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ПЗ <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,30                | 7,60                                                                                                                                                 | 9,90+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,30+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -,13               | 9,95                                                                                                                                                 | 7,91+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,28+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5,63               | 1,38+1                                                                                                                                               | 5,80+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,37+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5,44               | 1,51+1                                                                                                                                               | 5,07+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,16+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5,45               | 1,46+1                                                                                                                                               | 5,07+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,24+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5,04               | 1,42+1                                                                                                                                               | 5,41+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,30+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7,70               | 1,83+1                                                                                                                                               | 4,24+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,79+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,02+1              | 2,38+1                                                                                                                                               | 3,20+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,37+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,73+1              | 3,85+1                                                                                                                                               | 1,89+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8,49+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,72+1             | 5,98+1                                                                                                                                               | 1,20+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,46+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -,24+1             | 9,90+1                                                                                                                                               | 7,71+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,30+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>7</sup> ,50+1 | 1,88+2                                                                                                                                               | 4,36+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,74+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,16+2              | 2,82+2                                                                                                                                               | 2,82+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,16+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,30+2              | 3,10+2                                                                                                                                               | 2,51+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,05+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,78+2              | 3,83+2                                                                                                                                               | 1,84+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,20+2             | 4,32+2                                                                                                                                               | 1,49+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,50+2             | 4,58+2                                                                                                                                               | 1,31+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,72+2             | 4,74+2                                                                                                                                               | 1,20+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,82+2             | 4,83+2                                                                                                                                               | 1,16+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,90+2             | 4,90+2                                                                                                                                               | 1,13+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,97+2             | 4,94+2                                                                                                                                               | 1,10+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ,09+2              | 4,99+2                                                                                                                                               | 1,06+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | 663<br>644<br>645<br>604<br>670<br>602+1<br>673+1<br>672+1<br>624+1<br>650+1<br>616+2<br>630+2<br>678+2<br>620+2<br>630+2<br>672+2<br>682+2<br>690+2 | 1,38+1 1,44 1,51+1 1,45 1,46+1 1,40+1 1,42+1 1,70 1,83+1 1,02+1 2,38+1 1,73+1 3,85+1 1,72+1 5,98+1 1,24+1 9,90+1 1,50+1 1,88+2 1,16+2 2,82+2 1,30+2 3,10+2 1,78+2 1,383+2 1,20+2 4,32+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 1,50+2 | 1,63     1,38+1     5,80+2       1,44     1,51+1     5,07+2       1,45     1,46+1     5,07+2       1,04     1,42+1     5,41+2       1,00     1,83+1     4,24+2       1,02+1     2,38+1     3,20+2       1,73+1     3,85+1     1,89+2       1,72+1     5,98+1     1,20+2       1,24+1     9,90+1     7,71+1       1,50+1     1,88+2     4,36+1       1,16+2     2,82+2     2,82+1       3,30+2     3,10+2     2,51+1       3,78+2     3,83+2     1,84+1       2,20+2     4,32+2     1,49+1       3,50+2     4,58+2     1,31+1       3,72+2     4,74+2     1,20+1       3,82+2     4,83+2     1,16+1       3,90+2     4,90+2     1,13+1       3,97+2     4,94+2     1,10+1 |

| 14 | 3,33+2 | 4,96+2 | 9,81 | 6,59 |
|----|--------|--------|------|------|
| 20 | 3,43+2 | 4,80+2 | 9,52 | 6,81 |

 $И3O^{1)}$  – изотропное (4

) поле излучения, ПЗ – облучение параллельным пучком в переднезадней геометрии.

Приложение 19 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Допустимые уровни радиоактивного загрязнения поверхностей рабочих помещений и находящегося в них оборудования, кожных покровов, спецодежды, спецобуви и других средств индивидуальной защиты персонала, част/(см $^2$ 

| -  |    | ` |
|----|----|---|
| M. | ИН |   |
|    |    | , |

| OSz owa ooppagovovy                                                                                                       | Альфа-активные нуклиды <sup>1)</sup> |        | Бета-активные         |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------------|--|
| Объект загрязнения                                                                                                        | Отдельные <sup>2)</sup>              | прочие | нуклиды <sup>1)</sup> |  |
| Неповрежденная кожа, спецбелье, полотенца, внутренняя поверхность лицевых частей средств индивидуальной защиты            | 2                                    | 2      | 200 <sup>3)</sup>     |  |
| Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спец обуви | 5                                    | 20     | 2000                  |  |
| Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования                                  | 5                                    | 20     | 2000                  |  |
| Поверхности помещений периодического пребывания персонала и находящегося в них оборудования                               | 50                                   | 200    | 10000                 |  |
| Наружная поверхность дополнительных средств индивидуальной защиты, снимаемых в сан шлюзах                                 | 50                                   | 200    | 10000                 |  |

#### Примечание:

- 1) для кожных покровов, специальной одежды и обуви, других средств индивидуальной защиты нормируется общее (снимаемое и неснимаемое) радиоактивное загрязнение. В остальных случаях нормируется только снимаемое загрязнение;
- 2) к отдельным относятся альфа-активные нуклиды, среднегодовая допустимая объемная активность которых в воздухе рабочих помещений ДОА  $< 0.3 \text{ Бк/m}^3$ ;

3) для 
$$^{90}\mathrm{Sr} + ^{90}\mathrm{Y}$$
 - 40 част/(см $^2$  мин).

Приложение 20 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Допустимые уровни снимаемого радиоактивного загрязнения поверхности транспортных средств, используемых для перевозки радиоактивных веществ и материалов, част/(см $^2$ 

. мин)

|                                                                                      | Вид загрязнения             |                            |                             |                               |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------|--|--|--|
| Объект                                                                               | Снимаемое (нефик            | сированное)                | Неснимаемое (фикс           | ированное)                    |  |  |  |
| загрязнения                                                                          | альфа-активные радионуклиды | бета-активные радионуклиды | альфа-активные радионуклиды | бета-активные<br>радионуклиды |  |  |  |
| Наружная поверхность транспортного средства и охранной тары контейнера               | Не допускается              | 10                         | H е регламентируется        | 200 <sup>1)</sup>             |  |  |  |
| Внутренняя поверхность охранной тары и наружная поверхность транспортного контейнера | 1,0                         | 100                        | H е регламентируется        | 2000                          |  |  |  |

Примечание:

1) для 
$$^{90}$$
Sr +  $^{90}$ Y - 40 част/(см $^2$ 

. мин).

Приложение 21 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

# Значения дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала

| Радионуклид | Период<br>полураспада | Тип<br>Соединения при<br>ингаляции [1] | Дозовый коэффициент воздействия <b>є</b> перс, Зв/Бк | Предел годового поступления ПГП <sub>ПЕРС</sub> , Бк в год | Допустимая среднегодовая объемная активность ДОА <sub>ПЕРС</sub> , Бк/м <sup>3</sup> |
|-------------|-----------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1           | 2                     | 3                                      | 4                                                    | 5                                                          | 6                                                                                    |
| H-3         | 12,3 лет              | Γ1                                     | 1,8-11                                               | 1,1+09                                                     | 4,4+05                                                                               |
|             | ,                     | Γ2                                     | 1,8-15                                               | 1,1+13                                                     | 4,4+09                                                                               |
|             |                       | Γ3                                     | 1,8-13                                               | 1,1+11                                                     | 4,4+07                                                                               |
| Be-7        | 53,3 сут              | П                                      | 4,8-11                                               | 4,2+08                                                     | 1,7+05                                                                               |
|             | , 3                   | M                                      | 5,2-11                                               | 3,8+08                                                     | 1,5+05                                                                               |
| Be-10       | 1,60+06               | П                                      | 9,1-09                                               | 2,2+06                                                     | 8,8+02                                                                               |
|             |                       | M                                      | 3,2-08                                               | 6,3+05                                                     | 2,5+02                                                                               |
| C-11        | 0,340 час             | Γ1                                     | 3,2-12                                               | 6,2+09                                                     | 2,5+06                                                                               |
|             |                       | Γ2                                     | 2,2-12                                               | 9,1+09                                                     | 3,6+06                                                                               |
|             |                       | Γ3                                     | 1,2-12                                               | 1,7+10                                                     | 6,7+06                                                                               |
| C-14        | 5,73+03               | Γ1                                     | 5,8-10                                               | 3,4+07                                                     | 1,4+04                                                                               |
|             |                       | Γ2                                     | 6,2-12                                               | 3,2+09                                                     | 1,3+06                                                                               |
|             |                       | Γ3                                     | 8,0-13                                               | 2,5+10                                                     | 1,0+07                                                                               |
| F-18        | 1,83 час              | Б                                      | 3,0-11                                               | 6,7+08                                                     | 2,7+05                                                                               |
|             |                       | П                                      | 5,7-11                                               | 3,5+08                                                     | 1,4+05                                                                               |
|             |                       | M                                      | 6,0-11                                               | 3,3+08                                                     | 1,3+05                                                                               |
| Na-22       | 2,60 лет              | Б                                      | 1,3-09                                               | 1,5+07                                                     | 6,2+03                                                                               |
| Na-24       | 15,0 час              | Б                                      | 2,9-10                                               | 6,9+07                                                     | 2,8+04                                                                               |
| Mg-28       | 20,9 час              | Б                                      | 6,4-10                                               | 3,1+07                                                     | 1,3+04                                                                               |
|             |                       | П                                      | 1,2-09                                               | 1,7+07                                                     | 6,7+03                                                                               |
| Al-26       | 7,16+05 лет           | Б                                      | 1,1-08                                               | 1,8+06                                                     | 7,3+02                                                                               |
|             |                       | П                                      | 1,8-08                                               | 1,1+06                                                     | 4,4+02                                                                               |
|             |                       | M                                      | 6,0-11                                               | 3,3+08                                                     | 1,3+05                                                                               |
| Si-31       | 2,62 час              | Б                                      | 2,9-11                                               | 6,9+08                                                     | 2,8+05                                                                               |
|             |                       | П                                      | 7,5-11                                               | 2,7+08                                                     | 1,1+05                                                                               |
|             |                       | M                                      | 8,0-11                                               | 2,5+08                                                     | 1,0+05                                                                               |
| Si-32       | 4,50+02 лет           | Б                                      | 3,2-09                                               | 6,3+06                                                     | 2,5+03                                                                               |
|             |                       | П                                      | 1,5-08                                               | 1,3+06                                                     | 5,3+02                                                                               |
|             |                       | M                                      | 1,1-07                                               | 1,8+05                                                     | 7,3+01                                                                               |
| P-32        | 14,3 сут              | Б                                      | 8,0-10                                               | 2,5+07                                                     | 1,0+04                                                                               |
|             |                       | П                                      | 3,2-09                                               | 6,3+06                                                     | 2,5+03                                                                               |
| P-33        | 25,4 сут              | Б                                      | 9,6-11                                               | 2,1+08                                                     | 8,3+04                                                                               |
|             |                       | П                                      | 1,4-09                                               | 1,4+07                                                     | 5,7+03                                                                               |
|             |                       |                                        |                                                      |                                                            |                                                                                      |

| S-35    | 87,4 сут    | Б  | 5,3-11 | 3,8+08 | 1,5+05 |
|---------|-------------|----|--------|--------|--------|
|         |             | П  | 1,3-09 | 1,5+07 | 6,2+03 |
|         |             | Γ1 | 7,0-10 | 2,9+07 | 1,1+04 |
|         |             | Γ2 | 1,1-10 | 1,8+08 | 7,3+04 |
| Cl-36   | 3,01+05 лет | Б  | 3,4-10 | 5,9+07 | 2,4+04 |
|         |             | П  | 6,9-09 | 2,9+06 | 1,2+03 |
| Cl-38   | 0,620 час   | Б  | 2,7-11 | 7,4+08 | 3,0+05 |
|         |             | П  | 4,7-11 | 4,3+08 | 1,7+05 |
| Cl-39   | 0,927 час   | Б  | 2,7-11 | 7,4+08 | 3,0+05 |
|         |             | П  | 4,8-11 | 4,2+08 | 1,7+05 |
| K-40[1] | 1,28+09 лет | Б  | 2,1-09 | 9,5+06 | 3,8+03 |
| K-42    | 12,4 час    | Б  | 1,3-10 | 1,5+08 | 6,2+04 |
| K-43    | 22,6 час    | Б  | 1,5-10 | 1,3+08 | 5,3+04 |
| K-44    | 0,369 час   | Б  | 2,1-11 | 9,5+08 | 3,8+05 |
| K-45    | 0,333 час   | Б  | 1,6-11 | 1,3+09 | 5,0+05 |
| Ca-41   | 1,40+05 лет | П  | 1,7-10 | 1,2+08 | 4,7+04 |
| Ca-45   | 163 сут     | П  | 2,7-09 | 7,4+06 | 3,0+03 |
| Ca-47   | 4,53 сут    | П  | 1,8-09 | 1,1+07 | 4,4+03 |
| Sc-43   | 3,89 час    | M  | 1,2-10 | 1,7+08 | 6,7+04 |
| Sc-44   | 3,93 час    | M  | 1,9-10 | 1,1+08 | 4,2+04 |
| Sc-44m  | 2,44 сут    | M  | 1,5-09 | 1,3+07 | 5,3+03 |
| Sc-46   | 83,8 сут    | M  | 6,4-09 | 3,1+06 | 1,3+03 |
| Sc-47   | 3,35 сут    | M  | 7,0-10 | 2,9+07 | 1,1+04 |
| Sc-48   | 1,82 сут    | M  | 1,1-09 | 1,8+07 | 7,3+03 |
| Sc-49   | 0,956 час   | M  | 4,1-11 | 4,9+08 | 2,0+05 |
|         |             | П  | 2,0-10 | 1,0+08 | 4,0+04 |
| Ti-44   | 47,3 лет    | Б  | 6,1-08 | 3,3+05 | 1,3+02 |
|         |             | П  | 4,0-08 | 5,0+05 | 2,0+02 |
|         |             | M  | 1,2-07 | 1,7+05 | 6,7+01 |
| Ti-45   | 3,08 час    | Б  | 4,6-11 | 4,3+08 | 1,7+05 |
|         |             | П  | 9,1-11 | 2,2+08 | 8,8+04 |
|         |             | M  | 9,6-11 | 2,1+08 | 8,3+04 |
| V-47    | 0,543 час   | Б  | 1,9-11 | 1,1+09 | 4,2+05 |
|         |             | П  | 3,1-11 | 6,5+08 | 2,6+05 |
| V-48    | 16,2 сут    | Б  | 1,1-09 | 1,8+07 | 7,3+03 |
|         |             | П  | 2,3-09 | 8,7+06 | 3,5+03 |
| V-49    | 330 сут     | Б  | 2,1-11 | 9,5+08 | 3,8+05 |
|         |             | П  | 3,2-11 | 6,3+08 | 2,5+05 |
| Cr-48   | 23,0 час    | Б  | 1,0-10 | 2,0+08 | 8,0+04 |
|         |             | П  | 2,0-10 | 1,0+08 | 4,0+04 |
|         |             | M  | 2,2-10 | 9,1+07 | 3,6+04 |
| Cr-49   | 0,702 час   | Б  | 2,0-11 | 1,0+09 | 4,0+05 |

|        |             | П | 3,5-11 | 5,7+08 | 2,3+05 |
|--------|-------------|---|--------|--------|--------|
|        |             | M | 3,7-11 | 5,4+08 | 2,2+05 |
| Cr-51  | 27,7 сут    | Б | 2,1-11 | 9,5+08 | 3,8+05 |
|        |             | П | 3,1-11 | 6,5+08 | 2,6+05 |
|        |             | M | 3,6-11 | 5,6+08 | 2,2+05 |
| Mn-51  | 0,770 час   | Б | 2,4-11 | 8,3+08 | 3,3+05 |
|        |             | П | 4,3-11 | 4,7+08 | 1,9+05 |
| Mn-52  | 5,59 сут    | Б | 9,9-10 | 2,0+07 | 8,1+03 |
|        |             | П | 1,4-09 | 1,4+07 | 5,7+03 |
| Mn-52m | 0,352 час   | Б | 2,0-11 | 1,0+09 | 4,0+05 |
|        |             | П | 3,0-11 | 6,7+08 | 2,7+05 |
| Mn-53  | 3,70+06 лет | Б | 2,9-11 | 6,9+08 | 2,8+05 |
|        |             | П | 5,2-11 | 3,8+08 | 1,5+05 |
| Mn-54  | 312 сут     | Б | 8,7-10 | 2,3+07 | 9,2+03 |
|        |             | П | 1,5-09 | 1,3+07 | 5,3+03 |
| Mn-56  | 2,58 час    | Б | 6,9-11 | 2,9+08 | 1,2+05 |
|        |             | П | 1,3-10 | 1,5+08 | 6,2+04 |
| Fe-52  | 8,28 час    | Б | 4,1-10 | 4,9+07 | 2,0+04 |
|        |             | П | 6,3-10 | 3,2+07 | 1,3+04 |
| Fe-55  | 2,70 лет    | Б | 7,7-10 | 2,6+07 | 1,0+04 |
|        |             | П | 3,7-10 | 5,4+07 | 2,2+04 |
| Fe-59  | 44,5 сут    | Б | 2,2-09 | 9,1+06 | 3,6+03 |
|        |             | П | 3,5-09 | 5,7+06 | 2,3+03 |
| Fe-60  | 1,00+05     | Б | 2,8-07 | 7,1+04 | 2,9+01 |
|        |             | П | 1,3-07 | 1,5+05 | 6,2+01 |
| Co-55  | 17,5 час    | П | 5,1-10 | 3,9+07 | 1,6+04 |
|        |             | M | 5,5-10 | 3,6+07 | 1,5+04 |
| Co-56  | 78,7 сут    | П | 4,6-09 | 4,3+06 | 1,7+03 |
|        |             | M | 6,3-09 | 3,2+06 | 1,3+03 |
| Co-57  | 271 сут     | П | 5,2-10 | 3,8+07 | 1,5+04 |
|        |             | M | 9,4-10 | 2,1+07 | 8,5+03 |
| Co-58  | 70,8 сут    | П | 1,5-09 | 1,3+07 | 5,3+03 |
|        |             | M | 2,0-09 | 1,0+07 | 4,0+03 |
| Co-58m | 9,15 час    | П | 1,3-11 | 1,5+09 | 6,2+05 |
|        |             | M | 1,6-11 | 1,3+09 | 5,0+05 |
| Co-60  | 5,27 лет    | П | 9,6-09 | 2,1+06 | 8,3+02 |
|        |             | M | 2,9-08 | 6,9+05 | 2,8+02 |
| Co-60m | 0,174 час   | П | 1,1-12 | 1,8+10 | 7,3+06 |
|        |             | M | 1,3-12 | 1,5+10 | 6,2+06 |
| Co-61  | 1,65 час    | П | 4,8-11 | 4,2+08 | 1,7+05 |
|        |             | M | 5,1-11 | 3,9+08 | 1,6+05 |

| Co-62m | 0,232 час   | П | 2,1-11 | 9,5+08 | 3,8+05 |
|--------|-------------|---|--------|--------|--------|
|        |             | M | 2,2-11 | 9,1+08 | 3,6+05 |
| Ni-56  | 6,10 сут    | Б | 5,1-10 | 3,9+07 | 1,6+04 |
|        |             | П | 8,6-10 | 2,3+07 | 9,3+03 |
|        |             | Γ | 1,2-09 | 1,7+07 | 6,7+03 |
| Ni-57  | 1,50 сут    | Б | 2,8-10 | 7,1+07 | 2,9+04 |
|        |             | П | 5,1-10 | 3,9+07 | 1,6+04 |
|        |             | Γ | 5,6-10 | 3,6+07 | 1,4+04 |
| Ni-59  | 7,50+04 лет | Б | 1,8-10 | 1,1+08 | 4,4+04 |
|        |             | П | 1,3-10 | 1,5+08 | 6,2+04 |
|        |             | Γ | 8,3-10 | 2,4+07 | 9,6+03 |
| Ni-63  | 96,0 лет    | Б | 4,4-10 | 4,5+07 | 1,8+04 |
|        |             | П | 4,4-10 | 4,5+07 | 1,8+04 |
|        |             | Γ | 2,0-09 | 1,0+07 | 4,0+03 |
| Ni-65  | 2,52 час    | Б | 4,4-11 | 4,5+08 | 1,8+05 |
|        |             | П | 8,7-11 | 2,3+08 | 9,2+04 |
|        |             | Γ | 3,6-10 | 5,6+07 | 2,2+04 |
| Ni-66  | 2,27 сут    | Б | 4,5-10 | 4,4+07 | 1,8+04 |
|        |             | П | 1,6-09 | 1,3+07 | 5,0+03 |
|        |             | Γ | 1,6-09 | 1,3+07 | 5,0+03 |
| Cu-60  | 0,387 час   | Б | 2,4-11 | 8,3+08 | 3,3+05 |
|        |             | П | 3,5-11 | 5,7+08 | 2,3+05 |
|        |             | M | 3,6-11 | 5,6+08 | 2,2+05 |
| Cu-61  | 3,41 час    | Б | 4,0-11 | 5,0+08 | 2,0+05 |
|        |             | П | 7,6-11 | 2,6+08 | 1,1+05 |
|        |             | M | 8,0-11 | 2,5+08 | 1,0+05 |
| Cu-64  | 12,7 час    | Б | 3,8-11 | 5,3+08 | 2,1+05 |
|        |             | П | 1,1-10 | 1,8+08 | 7,3+04 |
|        |             | M | 1,2-10 | 1,7+08 | 6,7+04 |
| Cu-67  | 2,58 сут    | Б | 1,1-10 | 1,8+08 | 7,3+04 |
|        |             | П | 5,2-10 | 3,8+07 | 1,5+04 |
|        |             | M | 5,8-10 | 3,4+07 | 1,4+04 |
| Zn-62  | 9,26 час    | M | 4,7-10 | 4,3+07 | 1,7+04 |
| Zn-63  | 0,635 час   | M | 3,8-11 | 5,3+08 | 2,1+05 |
| Zn-65  | 244 сут     | M | 2,9-09 | 6,9+06 | 2,8+03 |
| Zn-69  | 0,950 час   | M | 2,8-11 | 7,1+08 | 2,9+05 |
| Zn-69m | 13,8 час    | M | 2,6-10 | 7,7+07 | 3,1+04 |
| Zn-71m | 3,92 час    | M | 1,6-10 | 1,3+08 | 5,0+04 |
| Zn-72  | 1,94 сут    | M | 1,2-09 | 1,7+07 | 6,7+03 |
| Ga-65  | 0,253 час   | Б | 1,2-11 | 1,7+09 | 6,7+05 |
|        |             | П | 1,8-11 | 1,1+09 | 4,4+05 |
| Ga-66  | 9,40 час    | Б | 2,7-10 | 7,4+07 | 3,0+04 |

|        |           | П | 4,6-10 | 4,3+07 | 1,7+04 |
|--------|-----------|---|--------|--------|--------|
| Ga-67  | 3,26 сут  | Б | 6,8-11 | 2,9+08 | 1,2+05 |
|        |           | П | 2,3-10 | 8,7+07 | 3,5+04 |
| Ga-68  | 1,13 час  | Б | 2,8-11 | 7,1+08 | 2,9+05 |
|        |           | П | 5,1-11 | 3,9+08 | 1,6+05 |
| Ga-70  | 0,353 час | Б | 9,3-12 | 2,2+09 | 8,6+05 |
|        |           | П | 1,6-11 | 1,3+09 | 5,0+05 |
| Ga-72  | 14,1 час  | Б | 3,1-10 | 6,5+07 | 2,6+04 |
|        |           | П | 5,5-10 | 3,6+07 | 1,5+04 |
| Ga-73  | 4,91 час  | Б | 5,8-11 | 3,4+08 | 1,4+05 |
|        |           | П | 1,5-10 | 1,3+08 | 5,3+04 |
| Ge-66  | 2,27 час  | Б | 5,7-11 | 3,5+08 | 1,4+05 |
| Ge-67  | 0,312 час | Б | 1,6-11 | 1,3+09 | 5,0+05 |
|        |           | П | 2,6-11 | 7,7+08 | 3,1+05 |
| Ge-68  | 288 сут   | Б | 5,4-10 | 3,7+07 | 1,5+04 |
|        |           | П | 1,3-08 | 1,5+06 | 6,2+02 |
| Ge-69  | 1,63 сут  | Б | 1,4-10 | 1,4+08 | 5,7+04 |
|        |           | П | 2,9-10 | 6,9+07 | 2,8+04 |
| Ge-71  | 11,8 сут  | Б | 5,0-12 | 4,0+09 | 1,6+06 |
| Ge-67  | 0,312 час | Б | 1,6-11 | 1,3+09 | 5,0+05 |
|        |           | П | 1,0-11 | 2,0+09 | 8,0+05 |
| Ge-75  | 1,38 час  | Б | 1,6-11 | 1,3+09 | 5,0+05 |
|        |           | П | 3,7-11 | 5,4+08 | 2,2+05 |
| Ge-77  | 11,3 час  | Б | 1,5-10 | 1,3+08 | 5,3+04 |
|        |           | П | 3,6-10 | 5,6+07 | 2,2+04 |
| Ge-78  | 1,45 час  | Б | 4,8-11 | 4,2+08 | 1,7+05 |
|        |           | П | 9,7-11 | 2,1+08 | 8,2+04 |
| As-69  | 0,253 час | П | 2,2-11 | 9,1+08 | 3,6+05 |
| As-70  | 0,876 час | П | 7,2-11 | 2,8+08 | 1,1+05 |
| As-71  | 2,70 сут  | П | 4,0-10 | 5,0+07 | 2,0+04 |
| As-72  | 1,08 сут  | П | 9,2-10 | 2,2+07 | 8,7+03 |
| As-73  | 80,3 сут  | П | 9,3-10 | 2,2+07 | 8,6+03 |
| As-74  | 17,8 сут  | П | 2,1-09 | 9,5+06 | 3,8+03 |
| As-76  | 1,10 сут  | П | 7,4-10 | 2,7+07 | 1,1+04 |
| As-77  | 1,62 сут  | П | 3,8-10 | 5,3+07 | 2,1+04 |
| As-78  | 1,51 час  | П | 9,2-11 | 2,2+08 | 8,7+04 |
| Se-70  | 0,683 час | Б | 4,5-11 | 4,4+08 | 1,8+05 |
|        |           | П | 7,3-11 | 2,7+08 | 1,1+05 |
| Se-73  | 7,15 час  | Б | 8,6-11 | 2,3+08 | 9,3+04 |
|        |           | П | 1,6-10 | 1,3+08 | 5,0+04 |
| Se-73m | 0,650 час | Б | 9,9-12 | 2,0+09 | 8,1+05 |

|        |             | П | 1,8-11 | 1,1+09 | 4,4+05 |
|--------|-------------|---|--------|--------|--------|
| Se-75  | 120 сут     | Б | 1,0-09 | 2,0+07 | 8,0+03 |
|        | -           | П | 1,4-09 | 1,4+07 | 5,7+03 |
| Se-79  | 6,50+04 лет | Б | 1,2-09 | 1,7+07 | 6,7+03 |
|        |             | П | 2,9-09 | 6,9+06 | 2,8+03 |
| Se-81  | 0,308 час   | Б | 8,6-12 | 2,3+09 | 9,3+05 |
|        |             | П | 1,5-11 | 1,3+09 | 5,3+05 |
| Se-81m | 0,954 час   | Б | 1,7-11 | 1,2+09 | 4,7+05 |
|        |             | П | 4,7-11 | 4,3+08 | 1,7+05 |
| Se-83  | 0,375 час   | Б | 1,9-11 | 1,1+09 | 4,2+05 |
|        |             | П | 3,3-11 | 6,1+08 | 2,4+05 |
| Br-74  | 0,422 час   | Б | 2,8-11 | 7,1+08 | 2,9+05 |
|        |             | П | 4,1-11 | 4,9+08 | 2,0+05 |
| Br-74m | 0,691 час   | Б | 4,2-11 | 4,8+08 | 1,9+05 |
|        |             | П | 6,5-11 | 3,1+08 | 1,2+05 |
|        |             | Б | 3,1-11 | 6,5+08 | 2,6+05 |
| Br-75  | 1,63 час    | П | 5,5-11 | 3,6+08 | 1,5+05 |
|        |             | Б | 2,6-10 | 7,7+07 | 3,1+04 |
| Br-76  | 16,2 час    | П | 4,2-10 | 4,8+07 | 1,9+04 |
| Br-77  | 2,33 сут    | Б | 6,7-11 | 3,0+08 | 1,2+05 |
|        |             | П | 8,7-11 | 2,3+08 | 9,2+04 |
| Br-80  | 0,290 час   | Б | 6,3-12 | 3,2+09 | 1,3+06 |
|        | ,_, _, _,   | П | 1,0-11 | 2,0+09 | 8,0+05 |
| Br-80m | 4,42 час    | Б | 3,5-11 | 5,7+08 | 2,3+05 |
|        | ,,          | П | 7,6-11 | 2,6+08 | 1,1+05 |
| Br-82  | 1,47 сут    | Б | 3,7-10 | 5,4+07 | 2,2+04 |
| 21 02  | 1,1,001     | П | 6,4-10 | 3,1+07 | 1,3+04 |
| Br-83  | 2,39 час    | Б | 1,7-11 | 1,2+09 | 4,7+05 |
| 21 00  |             | П | 4,8-11 | 4,2+08 | 1,7+05 |
| Br-84  | 0,530 час   | Б | 2,3-11 | 8,7+08 | 3,5+05 |
| D1 01  | 0,000 140   | П | 3,9-11 | 5,1+08 | 2,1+05 |
| Rb-79  | 0,382 час   | Б | 1,7-11 | 1,2+09 | 4,7+05 |
| Rb-81  | 4,58 час    | Б | 3,7-11 | 5,4+08 | 2,2+05 |
| Rb-81m | 0,533 час   | Б | 7,3-12 | 2,7+09 | 1,1+06 |
| Rb-82m | 6,20 час    | Б | 1,2-10 | 1,7+08 | 6,7+04 |
| Rb-83  | 86,2 сут    | Б | 7,1-10 | 2,8+07 | 1,1+04 |
| Rb-84  | 32,8 сут    | Б | 1,1-09 | 1,8+07 | 7,3+03 |
| Rb-86  | 18,6 сут    | Б | 9,6-10 | 2,1+07 | 8,3+03 |
| Rb-88  | 0,297 час   | Б | 1,7-11 | 1,2+09 | 4,7+05 |
| Rb-89  | 0,257 час   | Б | 1,4-11 | 1,4+09 | 5,7+05 |
| Sr-80  | 1,67 час    | Б | 7,6-11 | 2,6+08 | 1,1+05 |
| 21 00  | 1,07 100    | M | 1,4-10 | 1,4+08 | 5,7+04 |

| Sr-81  | 0,425 час | Б | 2,2-11 | 9,1+08 | 3,6+05 |
|--------|-----------|---|--------|--------|--------|
|        |           | M | 3,8-11 | 5,3+08 | 2,1+05 |
| Sr-82  | 25,0 сут  | Б | 2,2-09 | 9,1+06 | 3,6+03 |
|        |           | M | 1,0-08 | 2,0+06 | 8,0+02 |
| Sr-83  | 1,35 сут  | Б | 1,7-10 | 1,2+08 | 4,7+04 |
|        |           | M | 3,4-10 | 5,9+07 | 2,4+04 |
| Sr-85  | 64,8 сут  | Б | 3,9-10 | 5,1+07 | 2,1+04 |
|        |           | M | 7,7-10 | 2,6+07 | 1,0+04 |
| Sr-85m | 1,16 час  | Б | 3,1-12 | 6,5+09 | 2,6+06 |
|        |           | M | 4,5-12 | 4,4+09 | 1,8+06 |
| Sr-87m | 2,80 час  | Б | 1,2-11 | 1,7+09 | 6,7+05 |
|        |           | M | 2,2-11 | 9,1+08 | 3,6+05 |
| Sr-89  | 50,5 сут  | Б | 1,0-09 | 2,0+07 | 8,0+03 |
|        |           | M | 7,5-09 | 2,7+06 | 1,1+03 |
| Sr-90  | 29,1 лет  | Б | 2,4-08 | 8,3+05 | 3,3+02 |
|        |           | M | 1,5-07 | 1,3+05 | 5,3+01 |
| Sr-91  | 9,50 час  | Б | 1,7-10 | 1,2+08 | 4,7+04 |
| Y-86m  | 0,800 час | П | 2,9-11 | 6,9+08 | 2,8+05 |
|        |           | M | 4,1-10 | 4,9+07 | 2,0+04 |
| Sr-92  | 2,71 час  | Б | 1,1-10 | 1,8+08 | 7,3+04 |
|        |           | M | 2,3-10 | 8,7+07 | 3,5+04 |
| Y-86   | 14,7 час  | П | 4,8-10 | 4,2+07 | 1,7+04 |
|        |           | M | 4,9-10 | 4,1+07 | 1,6+04 |
| Y-86m  | 0,800 час | П | 2,9-11 | 6,9+08 | 2,8+05 |
|        |           | M | 3,0-11 | 6,7+08 | 2,7+05 |
| Y-87   | 3,35 сут  | П | 3,8-10 | 5,3+07 | 2,1+04 |
|        |           | M | 4,0-10 | 5,0+07 | 2,0+04 |
| Y-88   | 107 сут   | П | 3,9-09 | 5,1+06 | 2,1+03 |
|        |           | M | 4,1-09 | 4,9+06 | 2,0+03 |
| Y-90   | 2,67 сут  | П | 1,4-09 | 1,4+07 | 5,7+03 |
|        |           | M | 1,5-09 | 1,3+07 | 5,3+03 |
| Y-90m  | 3,19 час  | П | 9,6-11 | 2,1+08 | 8,3+04 |
|        |           | M | 1,0-10 | 2,0+08 | 8,0+04 |
| Y-91   | 58,5 сут  | П | 6,7-09 | 3,0+06 | 1,2+03 |
|        |           | M | 8,4-09 | 2,4+06 | 9,5+02 |
| Y-91m  | 0,828 час | П | 1,0-11 | 2,0+09 | 8,0+05 |
|        |           | M | 1,1-11 | 1,8+09 | 7,3+05 |
| Y-92   | 3,54 час  | П | 1,9-10 | 1,1+08 | 4,2+04 |
|        |           | M | 2,0-10 | 1,0+08 | 4,0+04 |
| Y-93   | 10,1 час  | П | 4,1-10 | 4,9+07 | 2,0+04 |
|        |           | M | 4,3-10 | 4,7+07 | 1,9+04 |

| Y-94     | 0,318 час                               | П | 2,8-11 | 7,1+08 | 2,9+05 |
|----------|-----------------------------------------|---|--------|--------|--------|
|          |                                         | M | 2,9-11 | 6,9+08 | 2,8+05 |
| Y-95     | 0,178 час                               | П | 1,6-11 | 1,3+09 | 5,0+05 |
|          |                                         | M | 1,7-11 | 1,2+09 | 4,7+05 |
| Zr-86    | 16,5 час                                | Б | 3,0-10 | 6,7+07 | 2,7+04 |
|          |                                         | П | 4,3-10 | 4,7+07 | 1,9+04 |
|          |                                         | M | 4,5-10 | 4,4+07 | 1,8+04 |
| Zr-88    | 83,4 сут                                | Б | 3,5-09 | 5,7+06 | 2,3+03 |
|          |                                         | П | 2,5-09 | 8,0+06 | 3,2+03 |
|          |                                         | M | 3,3-09 | 6,1+06 | 2,4+03 |
| Zr-89    | 3,27 сут                                | Б | 3,1-10 | 6,5+07 | 2,6+04 |
|          | , ,                                     | П | 5,3-10 | 3,8+07 | 1,5+04 |
|          |                                         | M | 5,5-10 | 3,6+07 | 1,5+04 |
| Zr-93    | 1,53+06 лет                             | Б | 2,5-08 | 8,0+05 | 3,2+02 |
|          |                                         | П | 9,6-09 | 2,1+06 | 8,3+02 |
|          |                                         | M | 3,1-09 | 6,5+06 | 2,6+03 |
| Zr-95    | 64,0 сут                                | Б | 2,5-09 | 8,0+06 | 3,2+03 |
|          |                                         | M | 3,3-09 | 6,1+06 | 2,4+03 |
|          |                                         | П | 4,5-09 | 4,4+06 | 1,8+03 |
|          |                                         | M | 5,5-09 | 3,6+06 | 1,5+03 |
| Zr-97    | 16,9 час                                | Б | 4,2-10 | 4,8+07 | 1,9+04 |
|          |                                         | П | 9,4-10 | 2,1+07 | 8,5+03 |
|          |                                         | M | 1,0-09 | 2,0+07 | 8,0+03 |
| Nb-88    | 0,238 час                               | П | 2,9-11 | 6,9+08 | 2,8+05 |
|          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | M | 3,0-11 | 6,7+08 | 2,7+05 |
| Nb-89    | 2,03 час                                | П | 1,2-10 | 1,7+08 | 6,7+04 |
| 110 09   | 2,00 100                                | M | 1,3-10 | 1,5+08 | 6,2+04 |
| Nb-89    | 1,10 час                                | П | 7,1-11 | 2,8+08 | 1,1+05 |
| - 10 02  |                                         | M | 7,4-11 | 2,7+08 | 1,1+05 |
| Nb-90    | 14,6 час                                | П | 6,6-10 | 3,0+07 | 1,2+04 |
|          | 1,5 1,5                                 | M | 6,9-10 | 2,9+07 | 1,2+04 |
| Nb-93m   | 13,6 лет                                | П | 4,6-10 | 4,3+07 | 1,7+04 |
| - 10 / 2 |                                         | M | 1,6-09 | 1,3+07 | 5,0+03 |
| Nb-94    | 2,03+04                                 | П | 1,0-08 | 2,0+06 | 8,0+02 |
|          | ,                                       | M | 4,5-08 | 4,4+05 | 1,8+02 |
| Nb-95    | 35,1 сут                                | П | 1,4-09 | 1,4+07 | 5,7+03 |
|          | , -, -                                  | M | 1,6-09 | 1,3+07 | 5,0+03 |
| Nb-95m   | 3,61 сут                                | П | 7,6-10 | 2,6+07 | 1,1+04 |
|          |                                         | M | 8,5-10 | 2,4+07 | 9,4+03 |
| Nb-96    | 23,3 час                                | П | 6,5-10 | 3,1+07 | 1,2+04 |
| .5 5 0   | ,                                       | M | 6,8-10 | 2,9+07 | 1,2+04 |
| Nb-97    | 1,20 час                                | П | 4,4-11 | 4,5+08 | 1,8+05 |

|        |             | M | 4,7-11 | 4,3+08 | 1,7+05 |
|--------|-------------|---|--------|--------|--------|
| Nb-98  | 0,858 час   | П | 5,9-11 | 3,4+08 | 1,4+05 |
|        |             | M | 6,1-11 | 3,3+08 | 1,3+05 |
| Mo-90  | 5,67 час    | Б | 1,7-10 | 1,2+08 | 4,7+04 |
|        |             | M | 3,7-10 | 5,4+07 | 2,2+04 |
| Mo-93  | 3,50+03     | Б | 1,0-09 | 2,0+07 | 8,0+03 |
|        |             | M | 2,2-09 | 9,1+06 | 3,6+03 |
| Mo-93m | 6,85 час    | Б | 1,0-10 | 2,0+08 | 8,0+04 |
|        |             | M | 1,8-10 | 1,1+08 | 4,4+04 |
| Mo-99  | 2,75 сут    | Б | 2,3-10 | 8,7+07 | 3,5+04 |
|        |             | M | 9,7-10 | 2,1+07 | 8,2+03 |
| Mo-101 | 0,244 час   | Б | 1,5-11 | 1,3+09 | 5,3+05 |
|        |             | M | 2,7-11 | 7,4+08 | 3,0+05 |
| Tc-93  | 2,75 час    | Б | 3,4-11 | 5,9+08 | 2,4+05 |
|        |             | П | 3,6-11 | 5,6+08 | 2,2+05 |
| Tc-93m | 0,725 час   | Б | 1,5-11 | 1,3+09 | 5,3+05 |
|        |             | П | 1,7-11 | 1,2+09 | 4,7+05 |
| Тс-94  | 4,88 час    | Б | 1,2-10 | 1,7+08 | 6,7+04 |
|        |             | П | 1,3-10 | 1,5+08 | 6,2+04 |
| Tc-94m | 0,867 час   | Б | 4,3-11 | 4,7+08 | 1,9+05 |
|        |             | П | 4,9-11 | 4,1+08 | 1,6+05 |
| Тс-95  | 20,0 час    | Б | 1,0-10 | 2,0+08 | 8,0+04 |
|        |             | П | 1,0-10 | 2,0+08 | 8,0+04 |
| Tc-95m | 61,0 сут    | Б | 3,1-10 | 6,5+07 | 2,6+04 |
|        |             | П | 8,7-10 | 2,3+07 | 9,2+03 |
| Тс-96  | 4,28 сут    | Б | 6,0-10 | 3,3+07 | 1,3+04 |
|        |             | П | 7,1-10 | 2,8+07 | 1,1+04 |
| Tc-96m | 0,858 час   | Б | 6,5-12 | 3,1+09 | 1,2+06 |
|        |             | П | 7,7-12 | 2,6+09 | 1,0+06 |
| Тс-97  | 2,60+06     | Б | 4,5-11 | 4,4+08 | 1,8+05 |
|        |             | П | 2,1-10 | 9,5+07 | 3,8+04 |
| Tc-97m | 87,0 сут    | Б | 2,8-10 | 7,1+07 | 2,9+04 |
|        |             | П | 3,1-09 | 6,5+06 | 2,6+03 |
| Tc-98  | 4,20+06 лет | Б | 1,0-09 | 2,0+07 | 8,0+03 |
|        |             | П | 8,1-09 | 2,5+06 | 9,9+02 |
| Тс-99  | 2,13+05 лет | Б | 2,9-10 | 6,9+07 | 2,8+04 |
|        |             | П | 3,9-09 | 5,1+06 | 2,1+03 |
| Tc-99m | 6,02 час    | Б | 1,2-11 | 1,7+09 | 6,7+05 |
|        |             | П | 1,9-11 | 1,1+09 | 4,2+05 |
| Tc-101 | 0,237 час   | Б | 8,7-12 | 2,3+09 | 9,2+05 |
| 10-101 |             | П | 1,3-11 | 1,5+09 | 6,2+05 |

| Tc-104  | 0,303 час | Б | 2,4-11 | 8,3+08 | 3,3+05 |
|---------|-----------|---|--------|--------|--------|
|         |           | П | 3,0-11 | 6,7+08 | 2,7+05 |
| Ru-94   | 0,863 час | Б | 2,7-11 | 7,4+08 | 3,0+05 |
|         | ,         | П | 4,4-11 | 4,5+08 | 1,8+05 |
|         |           | M | 4,6-11 | 4,3+08 | 1,7+05 |
|         |           | Γ | 5,6-11 | 3,6+08 | 1,4+05 |
| Ru-97   | 2,90 сут  | Б | 6,7-11 | 3,0+08 | 1,2+05 |
|         | , ,       | П | 1,1-10 | 1,8+08 | 7,3+04 |
|         |           | M | 1,1-10 | 1,8+08 | 7,3+04 |
|         |           | Γ | 1,2-10 | 1,7+08 | 6,7+04 |
| Ru-103  | 39,3 сут  | Б | 4,9-10 | 4,1+07 | 1,6+04 |
| 100     | 27,5 €31  | П | 2,3-09 | 8,7+06 | 3,5+03 |
|         |           | M | 2,8-09 | 7,1+06 | 2,9+03 |
|         |           | Γ | 1,1-09 | 1,8+07 | 7,3+03 |
| Ru-105  | 4,44 час  | Б | 7,1-11 | 2,8+08 | 1,1+05 |
| Ru 103  | 7,77 100  | П | 1,7-10 | 1,2+08 | 4,7+04 |
|         |           | M | 1,8-10 | 1,1+08 | 4,4+04 |
|         |           | Γ | 1,8-10 | 1,1+08 | 4,4+04 |
| Ru-106  | 1.01 year | Б | 8,0-09 |        |        |
| Ku-100  | 1,01 лет  |   | · ·    | 2,5+06 | 1,0+03 |
|         |           | П | 2,6-08 | 7,7+05 | 3,1+02 |
|         |           | M | 6,2-08 | 3,2+05 | 1,3+02 |
| D1 00   | 16.0      | Γ | 1,8-08 | 1,1+06 | 4,4+02 |
| Rh-99   | 16,0 сут  | Б | 3,3-10 | 6,1+07 | 2,4+04 |
|         |           | П | 7,3-10 | 2,7+07 | 1,1+04 |
|         |           | M | 8,3-10 | 2,4+07 | 9,6+03 |
| Rh-99m  | 4,70 час  | Б | 3,0-11 | 6,7+08 | 2,7+05 |
|         |           | П | 4,1-11 | 4,9+08 | 2,0+05 |
|         |           | M | 4,3-11 | 4,7+08 | 1,9+05 |
| Rh-100  | 20,8 час  | Б | 2,8-10 | 7,1+07 | 2,9+04 |
|         |           | П | 3,6-10 | 5,6+07 | 2,2+04 |
|         |           | M | 3,7-10 | 5,4+07 | 2,2+04 |
| Rh-101  | 3,20 лет  | Б | 1,4-09 | 1,4+07 | 5,7+03 |
|         |           | П | 2,2-09 | 9,1+06 | 3,6+03 |
|         |           | M | 5,0-09 | 4,0+06 | 1,6+03 |
| Rh-101m | 4,34 сут  | Б | 1,0-10 | 2,0+08 | 8,0+04 |
|         |           | П | 2,0-10 | 1,0+08 | 4,0+04 |
|         |           | M | 2,1-10 | 9,5+07 | 3,8+04 |
| Rh-102  | 2,90 лет  | Б | 7,3-09 | 2,7+06 | 1,1+03 |
|         |           | П | 6,5-09 | 3,1+06 | 1,2+03 |
|         |           | M | 1,6-08 | 1,3+06 | 5,0+02 |
| Rh-102m | 207 сут   | Б | 1,5-09 | 1,3+07 | 5,3+03 |
|         |           | П | 3,8-09 | 5,3+06 | 2,1+03 |

|            |             | M | 6,7-09 | 3,0+06 | 1,2+03 |
|------------|-------------|---|--------|--------|--------|
| Rh-103m    | 0,935 час   | Б | 8,6-13 | 2,3+10 | 9,3+06 |
|            |             | П | 2,3-12 | 8,7+09 | 3,5+06 |
|            |             | M | 2,5-12 | 8,0+09 | 3,2+06 |
| Rh-105     | 1,47 сут    | Б | 8,7-11 | 2,3+08 | 9,2+04 |
|            |             | П | 3,1-10 | 6,5+07 | 2,6+04 |
|            |             | M | 3,4-10 | 5,9+07 | 2,4+04 |
| 2 3Rh-106m | 2,20 час    | Б | 7,0-11 | 2,9+08 | 1,1+05 |
|            |             | П | 1,1-10 | 1,8+08 | 7,3+04 |
|            |             | M | 1,2-10 | 1,7+08 | 6,7+04 |
| Rh-107     | 0,362 час   | Б | 9,6-12 | 2,1+09 | 8,3+05 |
|            |             | П | 1,7-11 | 1,2+09 | 4,7+05 |
|            |             | M | 1,7-11 | 1,2+09 | 4,7+05 |
| Pd-100     | 3,63 сут    | Б | 4,9-10 | 4,1+07 | 1,6+04 |
|            |             | П | 7,9-10 | 2,5+07 | 1,0+04 |
|            |             | M | 8,3-10 | 2,4+07 | 9,6+03 |
| Pd-101     | 8,27 час    | Б | 4,2-11 | 4,8+08 | 1,9+05 |
|            |             | П | 6,2-11 | 3,2+08 | 1,3+05 |
|            |             | M | 6,4-11 | 3,1+08 | 1,3+05 |
| Pd-103     | 17,0 сут    | Б | 9,0-11 | 2,2+08 | 8,9+04 |
|            |             | П | 3,5-10 | 5,7+07 | 2,3+04 |
|            |             | M | 4,0-10 | 5,0+07 | 2,0+04 |
| Pd-107     | 6,50+06 лет | Б | 2,6-11 | 7,7+08 | 3,1+05 |
|            |             | П | 8,0-11 | 2,5+08 | 1,0+05 |
|            |             | M | 5,5-10 | 3,6+07 | 1,5+04 |
| Pd-109     | 13,4 час    | Б | 1,2-10 | 1,7+08 | 6,7+04 |
|            |             | П | 3,4-10 | 5,9+07 | 2,4+04 |
|            |             | M | 3,6-10 | 5,6+07 | 2,2+04 |
| Ag-102     | 0,215 час   | Б | 1,4-11 | 1,4+09 | 5,7+05 |
|            |             | П | 1,8-11 | 1,1+09 | 4,4+05 |
|            |             | M | 1,9-11 | 1,1+09 | 4,2+05 |
| Ag-103     | 1,09 час    | Б | 1,6-11 | 1,3+09 | 5,0+05 |
|            |             | П | 2,7-11 | 7,4+08 | 3,0+05 |
|            |             | M | 2,8-11 | 7,1+08 | 2,9+05 |
| Ag-104     | 1,15 час    | Б | 3,0-11 | 6,7+08 | 2,7+05 |
|            |             | П | 3,9-11 | 5,1+08 | 2,1+05 |
|            |             | M | 4,0-11 | 5,0+08 | 2,0+05 |
| Ag-104m    | 0,558 час   | Б | 1,7-11 | 1,2+09 | 4,7+05 |
|            |             | П | 2,6-11 | 7,7+08 | 3,1+05 |
|            |             | M | 2,7-11 | 7,4+08 | 3,0+05 |
| Ag-105     | 41,0 сут    | Б | 5,4-10 | 3,7+07 | 1,5+04 |

|           |             | П      | 6,9-10           | 2,9+07 | 1,2+04 |
|-----------|-------------|--------|------------------|--------|--------|
|           |             | M      | 7,8-10           | 2,6+07 | 1,0+04 |
| Ag-106    | 0,399 час   | Б      | 9,8-12           | 2,0+09 | 8,2+05 |
| <u> </u>  |             | П      | 1,6-11           | 1,3+09 | 5,0+05 |
|           |             | M      | 1,6-11           | 1,3+09 | 5,0+05 |
| Ag-106m   | 8,41 сут    | Б      | 1,1-09           | 1,8+07 | 7,3+03 |
|           | , ,         | M      | 1,6-11           | 1,3+09 | 5,0+05 |
|           |             | П      | 1,1-09           | 1,8+07 | 7,3+03 |
| Ag-108m   | 1,27+02 лет | Б      | 6,1-09           | 3,3+06 | 1,3+03 |
|           | ,           | П      | 7,0-09           | 2,9+06 | 1,1+03 |
|           |             | M      | 3,5-08           | 5,7+05 | 2,3+02 |
| Ag-110m   | 250 сут     | Б      | 5,5-09           | 3,6+06 | 1,5+03 |
| <u> </u>  |             | П      | 7,2-09           | 2,8+06 | 1,1+03 |
|           |             | M      | 1,2-08           | 1,7+06 | 6,7+02 |
| Ag-111    | 7,45 сут    | Б      | 4,1-10           | 4,9+07 | 2,0+04 |
|           | 7,12 0) 2   | П      | 1,5-09           | 1,3+07 | 5,3+03 |
|           |             | M      | 1,7-09           | 1,2+07 | 4,7+03 |
| Ag-112    | 3,12 час    | Б      | 8,2-11           | 2,4+08 | 9,8+04 |
| 118 112   | 2,12 100    | П      | 1,7-10           | 1,2+08 | 4,7+04 |
|           |             | M      | 1,8-10           | 1,1+08 | 4,4+04 |
| Ag-115    | 0,333 час   | Б      | 1,6-11           | 1,3+09 | 5,0+05 |
| 718 113   | 0,555 140   | П      | 2,8-11           | 7,1+08 | 2,9+05 |
|           |             | M      | 3,0-11           | 6,7+08 | 2,7+05 |
| Cd-104    | 0,961 час   | Б      | 2,7-11           | 7,4+08 | 3,0+05 |
| Cu 101    | 0,501 140   | П      | 3,6-11           | 5,6+08 | 2,2+05 |
|           |             | M      | 3,7-11           | 5,4+08 | 2,2+05 |
| Cd-107    | 6,49 час    | Б      | 2,3-11           | 8,7+08 | 3,5+05 |
| Cu 107    | 0,49 140    | П      | 8,1-11           | 2,5+08 | 9,9+04 |
|           |             | M      | 8,7-11           | 2,3+08 | 9,2+04 |
| Cd-109    | 1,27 лет    | Б      | 8,1-09           | 2,5+06 | 9,9+02 |
| Cu 107    | 1,27 3101   | П      | 6,2-09           | 3,2+06 | 1,3+03 |
|           |             | M      | 5,8-09           | 3,4+06 | 1,4+03 |
| Cd-113    | 9,30+15 лет | Б      | 1,2-07           | 1,7+05 | 6,7+01 |
| Cu-113    | 9,30+13 лет | П      | 5,3-08           | 3,8+05 | 1,5+02 |
|           |             | M      | 2,5-08           | 8,0+05 | 3,2+02 |
| Cd-113m   | 13,6 лет    | Б      | 1,1-07           | 1,8+05 | 7,3+01 |
| Cu-113111 | 13,0 лет    |        |                  |        |        |
|           |             | Π<br>M | 5,0-08<br>3,0-08 | 4,0+05 | 1,6+02 |
| Cd 115    | 2 22 22     |        |                  | 6,7+05 | 2,7+02 |
| Cd-115    | 2,23 сут    | Б      | 3,7-10           | 5,4+07 | 2,2+04 |
|           |             | П      | 9,7-10           | 2,1+07 | 8,2+03 |
| C4 115:-  | 44.6        | M      | 1,1-09           | 1,8+07 | 7,3+03 |
| Cd-115m   | 44,6 сут    | Б      | 5,3-09           | 3,8+06 | 1,5+03 |

|         |           | П | 5,9-09 | 3,4+06 | 1,4+03 |
|---------|-----------|---|--------|--------|--------|
|         |           | M | 7,3-09 | 2,7+06 | 1,1+03 |
| Cd-117  | 2,49 час  | Б | 7,3-11 | 2,7+08 | 1,1+05 |
|         |           | П | 1,6-10 | 1,3+08 | 5,0+04 |
|         |           | M | 1,7-10 | 1,2+08 | 4,7+04 |
| Cd-117m | 3,36 час  | Б | 1,0-10 | 2,0+08 | 8,0+04 |
|         |           | П | 2,0-10 | 1,0+08 | 4,0+04 |
|         |           | M | 2,1-10 | 9,5+07 | 3,8+04 |
| In-109  | 4,20 час  | Б | 3,2-11 | 6,3+08 | 2,5+05 |
|         |           | П | 4,4-11 | 4,5+08 | 1,8+05 |
| In-110  | 4,90 час  | Б | 1,2-10 | 1,7+08 | 6,7+04 |
|         |           | П | 1,4-10 | 1,4+08 | 5,7+04 |
| In-110  | 1,15 час  | Б | 3,1-11 | 6,5+08 | 2,6+05 |
|         |           | П | 5,0-11 | 4,0+08 | 1,6+05 |
| In-111  | 2,83 сут  | Б | 1,3-10 | 1,5+08 | 6,2+04 |
|         |           | П | 2,3-10 | 8,7+07 | 3,5+04 |
| In-112  | 0,240 час | Б | 5,0-12 | 4,0+09 | 1,6+06 |
|         |           | П | 7,8-12 | 2,6+09 | 1,0+06 |
| In-113m | 1,66 час  | Б | 1,0-11 | 2,0+09 | 8,0+05 |
|         |           | П | 2,0-11 | 1,0+09 | 4,0+05 |
| In-114m | 49,5 сут  | Б | 9,3-09 | 2,2+06 | 8,6+02 |
|         |           | П | 5,9-09 | 3,4+06 | 1,4+03 |
| In-115m | 4,49 час  | Б | 2,5-11 | 8,0+08 | 3,2+05 |
|         |           | П | 6,0-11 | 3,3+08 | 1,3+05 |
| In-116m | 0,902 час | Б | 3,0-11 | 6,7+08 | 2,7+05 |
|         |           | П | 4,8-11 | 4,2+08 | 1,7+05 |
| In-117  | 0,730 час | Б | 1,6-11 | 1,3+09 | 5,0+05 |
|         |           | П | 3,0-11 | 6,7+08 | 2,7+05 |
| In-117m | 1,94 час  | Б | 3,1-11 | 6,5+08 | 2,6+05 |
|         |           | П | 7,3-11 | 2,7+08 | 1,1+05 |
| In-119m | 0,300 час | Б | 1,1-11 | 1,8+09 | 7,3+05 |
|         |           | П | 1,8-11 | 1,1+09 | 4,4+05 |
| Sn-110  | 4,00 час  | Б | 1,1-10 | 1,8+08 | 7,3+04 |
|         |           | П | 1,6-10 | 1,3+08 | 5,0+04 |
| Sn-111  | 0,588 час | Б | 8,3-12 | 2,4+09 | 9,6+05 |
|         |           | П | 1,4-11 | 1,4+09 | 5,7+05 |
| Sn-113  | 115 сут   | Б | 5,4-10 | 3,7+07 | 1,5+04 |
|         |           | П | 2,5-09 | 8,0+06 | 3,2+03 |
| Sn-117m | 13,6 сут  | Б | 2,9-10 | 6,9+07 | 2,8+04 |
|         |           | П | 2,3-09 | 8,7+06 | 3,5+03 |
| Sn-119m | 293 сут   | Б | 2,9-10 | 6,9+07 | 2,8+04 |

|         |                                         | П | 2,0-09 | 1,0+07 | 4,0+03 |
|---------|-----------------------------------------|---|--------|--------|--------|
| Sn-121  | 1,13 сут                                | Б | 6,4-11 | 3,1+08 | 1,3+05 |
|         | , ,                                     | П | 2,2-10 | 9,1+07 | 3,6+04 |
| Sn-121m | 55,0 лет                                | Б | 8,0-10 | 2,5+07 | 1,0+04 |
|         | ,                                       | П | 4,2-09 | 4,8+06 | 1,9+03 |
| Sn-123  | 129 сут                                 | Б | 1,2-09 | 1,7+07 | 6,7+03 |
|         | 3                                       | П | 7,7-09 | 2,6+06 | 1,0+03 |
| Sn-123m | 0,668 час                               | Б | 1,4-11 | 1,4+09 | 5,7+05 |
|         |                                         | П | 2,8-11 | 7,1+08 | 2,9+05 |
| Sn-125  | 9,64 сут                                | Б | 9,2-10 | 2,2+07 | 8,7+03 |
|         | , ,                                     | П | 3,0-09 | 6,7+06 | 2,7+03 |
| Sn-126  | 1,00+05 лет                             | Б | 1,1-08 | 1,8+06 | 7,3+02 |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 2,7-08 | 7,4+05 | 3,0+02 |
| Sn-127  | 2,10 час                                | Б | 6,9-11 | 2,9+08 | 1,2+05 |
|         | ,                                       | П | 1,3-10 | 1,5+08 | 6,2+04 |
| Sn-128  | 0,985 час                               | Б | 5,4-11 | 3,7+08 | 1,5+05 |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 9,6-11 | 2,1+08 | 8,3+04 |
| Sb-115  | 0,530 час                               | Б | 9,2-12 | 2,2+09 | 8,7+05 |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 1,4-11 | 1,4+09 | 5,7+05 |
| Sb-116  | 0,263 час                               | Б | 9,9-12 | 2,0+09 | 8,1+05 |
|         | ,                                       | П | 1,4-11 | 1,4+09 | 5,7+05 |
| Sb-116m | 1,00 час                                | Б | 3,5-11 | 5,7+08 | 2,3+05 |
|         |                                         | П | 5,0-11 | 4,0+08 | 1,6+05 |
| Sb-117  | 2,80 час                                | Б | 9,3-12 | 2,2+09 | 8,6+05 |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 1,7-11 | 1,2+09 | 4,7+05 |
|         |                                         | П | 9,6-11 | 2,1+08 | 8,3+04 |
| Sb-118m | 5,00 час                                | Б | 1,0-10 | 2,0+08 | 8,0+04 |
|         | .,                                      | П | 1,3-10 | 1,5+08 | 6,2+04 |
| Sb-119  | 1,59 сут                                | Б | 2,5-11 | 8,0+08 | 3,2+05 |
|         | , ,                                     | П | 3,7-11 | 5,4+08 | 2,2+05 |
| Sb-120  | 5,76 сут                                | Б | 5,9-10 | 3,4+07 | 1,4+04 |
|         | , ,                                     | П | 1,0-09 | 2,0+07 | 8,0+03 |
| Sb-120  | 0,265 час                               | Б | 4,9-12 | 4,1+09 | 1,6+06 |
|         | , , , , , , , , , , , , , , , , , , , , | П | 7,4-12 | 2,7+09 | 1,1+06 |
| Sb-122  | 2,70 сут                                | Б | 3,9-10 | 5,1+07 | 2,1+04 |
|         |                                         | П | 1,0-09 | 2,0+07 | 8,0+03 |
| Sb-124  | 60,2 сут                                | Б | 1,3-09 | 1,5+07 | 6,2+03 |
|         | , ,                                     | П | 6,1-09 | 3,3+06 | 1,3+03 |
| Sb-124m | 0,337 час                               | Б | 3,0-12 | 6,7+09 | 2,7+06 |
| Sb-125  | 2,77 лет                                | Б | 1,4-09 | 1,4+07 | 5,7+03 |
|         |                                         | П | 4,5-09 | 4,4+06 | 1,8+03 |
| Sb-126  | 12,4 сут                                | Б | 1,1-09 | 1,8+07 | 7,3+03 |

|           |                                         | П | 2,7-09 | 7,4+06 | 3,0+03 |
|-----------|-----------------------------------------|---|--------|--------|--------|
| Sb-126m   | 0,317 час                               | Б | 1,3-11 | 1,5+09 | 6,2+05 |
| Sb-127    | 3,85 сут                                | Б | 4,6-10 | 4,3+07 | 1,7+04 |
|           |                                         | П | 1,6-09 | 1,3+07 | 5,0+03 |
| Sb-128    | 9,01 час                                | Б | 2,5-10 | 8,0+07 | 3,2+04 |
|           |                                         | П | 4,2-10 | 4,8+07 | 1,9+04 |
| Sb-128    | 0,173 час                               | Б | 1,1-11 | 1,8+09 | 7,3+05 |
|           |                                         | П | 1,5-11 | 1,3+09 | 5,3+05 |
| Sb-129    | 4,32 час                                | Б | 1,1-10 | 1,8+08 | 7,3+04 |
|           | ,                                       | П | 2,4-10 | 8,3+07 | 3,3+04 |
| Sb-130    | 0,667 час                               | Б | 3,5-11 | 5,7+08 | 2,3+05 |
|           |                                         | П | 5,4-11 | 3,7+08 | 1,5+05 |
| Sb-131    | 0,383 час                               | Б | 3,7-11 | 5,4+08 | 2,2+05 |
|           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 5,2-11 | 3,8+08 | 1,5+05 |
| Te-116    | 2,49 час                                | Б | 6,3-11 | 3,2+08 | 1,3+05 |
| 10 110    | 2,19 140                                | Γ | 8,7-11 | 2,3+08 | 9,2+04 |
| Sb-129    | 4,32 час                                | Б | 1,1-10 | 1,8+08 | 7,3+04 |
| 50 12)    | 7,32 100                                | П | 3,9-10 | 5,1+07 | 2,1+04 |
|           |                                         | Γ | 5,1-10 | 3,9+07 | 1,6+04 |
| Te-121m   | 154 сут                                 | Б | 1,8-09 | 1,1+07 | 4,4+03 |
| 16-121111 | 134 Cy 1                                | П | 4,2-09 | 4,8+06 | 1,9+03 |
|           |                                         |   |        |        |        |
| Т. 102    | 1.00+12                                 | Γ | 5,5-09 | 3,6+06 | 1,5+03 |
| Te-123    | 1,00+13 лет                             | Б | 4,0-09 | 5,0+06 | 2,0+03 |
|           |                                         | П | 2,6-09 | 7,7+06 | 3,1+03 |
| T. 100    | 120                                     | Γ | 1,2-08 | 1,7+06 | 6,7+02 |
| Te-123m   | 120 сут                                 | Б | 9,7-10 | 2,1+07 | 8,2+03 |
|           |                                         | П | 3,9-09 | 5,1+06 | 2,1+03 |
|           |                                         | Γ | 2,9-09 | 6,9+06 | 2,8+03 |
| Te-125m   | 58,0 сут                                | Б | 5,1-10 | 3,9+07 | 1,6+04 |
|           |                                         | П | 3,3-09 | 6,1+06 | 2,4+03 |
|           |                                         | Γ | 1,5-09 | 1,3+07 | 5,3+03 |
| Te-127    | 9,35 час                                | Б | 4,2-11 | 4,8+08 | 1,9+05 |
|           |                                         | П | 1,2-10 | 1,7+08 | 6,7+04 |
|           |                                         | Γ | 7,7-11 | 2,6+08 | 1,0+05 |
| Te-127m   | 109 сут                                 | Б | 1,6-09 | 1,3+07 | 5,0+03 |
|           |                                         | П | 7,2-09 | 2,8+06 | 1,1+03 |
|           |                                         | Γ | 4,6-09 | 4,3+06 | 1,7+03 |
| Te-129    | 1,16 час                                | Б | 1,7-11 | 1,2+09 | 4,7+05 |
|           |                                         | П | 3,8-11 | 5,3+08 | 2,1+05 |
|           |                                         | Γ | 3,7-11 | 5,4+08 | 2,2+05 |
| Te-129m   | 33,6 сут                                | Б | 1,3-09 | 1,5+07 | 6,2+03 |

|           |           | П  | 6,3-09 | 3,2+06 | 1,3+03 |
|-----------|-----------|----|--------|--------|--------|
|           |           | Γ  | 3,7-09 | 5,4+06 | 2,2+03 |
| Te-131    | 0,417 час | Б  | 2,3-11 | 8,7+08 | 3,5+05 |
|           | ,         | П  | 3,8-11 | 5,3+08 | 2,1+05 |
|           |           | Γ  | 6,8-11 | 2,9+08 | 1,2+05 |
| Te-131m   | 1,25 сут  | Б  | 8,7-10 | 2,3+07 | 9,2+03 |
|           | , ,       | П  | 1,1-09 | 1,8+07 | 7,3+03 |
|           |           | Γ  | 2,4-09 | 8,3+06 | 3,3+03 |
| Te-132    | 3,26 сут  | Б  | 1,8-09 | 1,1+07 | 4,4+03 |
|           | , ,       | П  | 2,2-09 | 9,1+06 | 3,6+03 |
|           |           | Γ  | 5,1-09 | 3,9+06 | 1,6+03 |
| Te-133    | 0,207 час | Б  | 2,0-11 | 1,0+09 | 4,0+05 |
| 1 4 100   | 0,207 100 | П  | 2,7-11 | 7,4+08 | 3,0+05 |
|           |           | Γ  | 5,6-11 | 3,6+08 | 1,4+05 |
| Te-133m   | 0,923 час | Б  | 8,4-11 | 2,4+08 | 9,5+04 |
| 10 133111 | 0,723 luc | П  | 1,2-10 | 1,7+08 | 6,7+04 |
|           |           | Γ  | 2,2-10 | 9,1+07 | 3,6+04 |
| Te-134    | 0,696 час | Б  | 5,0-11 | 4,0+08 | 1,6+05 |
| 10-134    | 0,070 440 | П  | 7,1-11 | 2,8+08 | 1,1+05 |
|           |           | Γ  | 8,4-11 | 2,4+08 | 9,5+04 |
| I-120     | 1,35 час  | Б  | 1,0-10 | 2,4+08 | 8,0+04 |
| 1-120     | 1,33 4ac  | Γ1 | 3,0-10 |        |        |
|           |           | Γ2 |        | 6,7+07 | 2,7+04 |
| I-120m    | 0.992 was |    | 2,0-10 | 1,0+08 | 4,0+04 |
| 1-120111  | 0,883 час | Б  | 8,7-11 | 2,3+08 | 9,2+04 |
|           |           | Γ1 | 1,8-10 | 1,1+08 | 4,4+04 |
| T 101     | 2.12      | Γ2 | 1,0-10 | 2,0+08 | 8,0+04 |
| I-121     | 2,12 час  | Б  | 2,8-11 | 7,1+08 | 2,9+05 |
|           |           | Γ1 | 8,6-11 | 2,3+08 | 9,3+04 |
| T 100     | 12.2      | Γ2 | 5,6-11 | 3,6+08 | 1,4+05 |
| I-123     | 13,2 час  | Б  | 7,6-11 | 2,6+08 | 1,1+05 |
|           |           | Γ1 | 2,1-10 | 9,5+07 | 3,8+04 |
|           |           | Γ2 | 1,5-10 | 1,3+08 | 5,3+04 |
| I-124     | 4,18 сут  | Б  | 4,5-09 | 4,4+06 | 1,8+03 |
|           |           | Γ1 | 1,2-08 | 1,7+06 | 6,7+02 |
|           |           | Γ2 | 9,2-09 | 2,2+06 | 8,7+02 |
| I-125     | 60,1 сут  | Б  | 5,3-09 | 3,8+06 | 1,5+03 |
|           |           | Γ1 | 1,4-08 | 1,4+06 | 5,7+02 |
|           |           | Γ2 | 1,1-08 | 1,8+06 | 7,3+02 |
| I-126     | 13,0 сут  | Б  | 1,0-08 | 2,0+06 | 8,0+02 |
|           |           | Γ1 | 2,6-08 | 7,7+05 | 3,1+02 |
|           |           | Γ2 | 2,0-08 | 1,0+06 | 4,0+02 |
| I-128     | 0,416 час | Б  | 1,4-11 | 1,4+09 | 5,7+05 |

|         |           | Γ1 | 6,5-11 | 3,1+08 | 1,2+05 |
|---------|-----------|----|--------|--------|--------|
|         |           | Γ2 | 1,3-11 | 1,5+09 | 6,2+05 |
| I-129   | 1,57+07   | Б  | 3,7-08 | 5,4+05 | 2,2+02 |
|         |           | Γ1 | 9,6-08 | 2,1+05 | 8,3+01 |
|         |           | Γ2 | 7,4-08 | 2,7+05 | 1,1+02 |
| I-130   | 12,4 час  | Б  | 6,9-10 | 2,9+07 | 1,2+04 |
|         |           | Γ1 | 1,9-09 | 1,1+07 | 4,2+03 |
|         |           | Γ2 | 1,4-09 | 1,4+07 | 5,7+03 |
| I-131   | 8,04 сут  | Б  | 7,6-09 | 2,6+06 | 1,1+03 |
|         |           | Γ1 | 2,0-08 | 1,0+06 | 4,0+02 |
|         |           | Γ2 | 1,5-08 | 1,3+06 | 5,3+02 |
| I-132   | 2,30 час  | Б  | 9,6-11 | 2,1+08 | 8,3+04 |
|         |           | Γ1 | 3,1-10 | 6,5+07 | 2,6+04 |
|         |           | Γ2 | 1,9-10 | 1,1+08 | 4,2+04 |
| I-132m  | 1,39 час  | Б  | 8,1-11 | 2,5+08 | 9,9+04 |
|         |           | Γ1 | 2,7-10 | 7,4+07 | 3,0+04 |
|         |           | Γ2 | 1,6-10 | 1,3+08 | 5,0+04 |
| I-133   | 20,8 час  | Б  | 1,5-09 | 1,3+07 | 5,3+03 |
|         |           | Γ1 | 4,0-09 | 5,0+06 | 2,0+03 |
|         |           | Γ2 | 3,1-09 | 6,5+06 | 2,6+03 |
| I-134   | 0,876 час | Б  | 4,8-11 | 4,2+08 | 1,7+05 |
|         |           | Γ1 | 1,5-10 | 1,3+08 | 5,3+04 |
|         |           | Γ2 | 5,0-11 | 4,0+08 | 1,6+05 |
| I-135   | 6,61 час  | Б  | 3,3-10 | 6,1+07 | 2,4+04 |
|         |           | Γ1 | 9,2-10 | 2,2+07 | 8,7+03 |
|         |           | Γ2 | 6,8-10 | 2,9+07 | 1,2+04 |
| Cs-125  | 0,750 час | Б  | 1,3-11 | 1,5+09 | 6,2+05 |
| Cs-127  | 6,25 час  | Б  | 2,2-11 | 9,1+08 | 3,6+05 |
| Cs-129  | 1,34 сут  | Б  | 4,5-11 | 4,4+08 | 1,8+05 |
| Cs-130  | 0,498 час | Б  | 8,4-12 | 2,4+09 | 9,5+05 |
| Cs-131  | 9,69 сут  | Б  | 2,8-11 | 7,1+08 | 2,9+05 |
| Cs-132  | 6,48 сут  | Б  | 2,4-10 | 8,3+07 | 3,3+04 |
| Cs-134  | 2,06 лет  | Б  | 6,8-09 | 2,9+06 | 1,2+03 |
| Cs-134m | 2,90 час  | Б  | 1,5-11 | 1,3+09 | 5,3+05 |
| Cs-135  | 2,30+06   | Б  | 7,1-10 | 2,8+07 | 1,1+04 |
| Cs-135m | 0,883 час | Б  | 1,3-11 | 1,5+09 | 6,2+05 |
| Cs-136  | 13,1 сут  | Б  | 1,3-09 | 1,5+07 | 6,2+03 |
| Cs-137  | 30,0 лет  | Б  | 4,8-09 | 4,2+06 | 1,7+03 |
| Cs-138  | 0,536 час | Б  | 2,6-11 | 7,7+08 | 3,1+05 |
| Ba-126  | 1,61 час  | Б  | 7,8-11 | 2,6+08 | 1,0+05 |
| Ba-128  | 2,43 сут  | Б  | 8,0-10 | 2,5+07 | 1,0+04 |

| Ba-131    | 11,8 сут                                | Б | 2,3-10 | 8,7+07 | 3,5+04                                |
|-----------|-----------------------------------------|---|--------|--------|---------------------------------------|
| Ba-131m   | 0,243 час                               | Б | 4,1-12 | 4,9+09 | 2,0+06                                |
| Ba-133    | 10,7 лет                                | Б | 1,5-09 | 1,3+07 | 5,3+03                                |
| Ba-133m   | 1,62 сут                                | Б | 1,9-10 | 1,1+08 | 4,2+04                                |
| Ba-135m   | 1,20 сут                                | Б | 1,5-10 | 1,3+08 | 5,3+04                                |
| Ba-139    | 1,38 час                                | Б | 3,5-11 | 5,7+08 | 2,3+05                                |
| Ba-140    | 12,7 сут                                | Б | 1,0-09 | 2,0+07 | 8,0+03                                |
| Ba-141    | 0,305 час                               | Б | 2,2-11 | 9,1+08 | 3,6+05                                |
| Ba-142    | 0,177 час                               | Б | 1,6-11 | 1,3+09 | 5,0+05                                |
| La-131    | 0,983 час                               | Б | 1,4-11 | 1,4+09 | 5,7+05                                |
|           | ,                                       | П | 2,3-11 | 8,7+08 | 3,5+05                                |
| La-132    | 4,80 час                                | Б | 1,1-10 | 1,8+08 | 7,3+04                                |
|           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 1,7-10 | 1,2+08 | 4,7+04                                |
| La-135    | 19,5 час                                | Б | 1,1-11 | 1,8+09 | 7,3+05                                |
|           | ,/-                                     | П | 1,5-11 | 1,3+09 | 5,3+05                                |
| La-137    | 6,00+04                                 | Б | 8,6-09 | 2,3+06 | 9,3+02                                |
| Δ# 10 /   | 0,00                                    | П | 3,4-09 | 5,9+06 | 2,4+03                                |
| La-138    | 1,35+11                                 | Б | 1,5-07 | 1,3+05 | 5,3+01                                |
|           | 1,50 11                                 | П | 6,1-08 | 3,3+05 | 1,3+02                                |
| La-140    | 1,68 сут                                | Б | 6,0-10 | 3,3+07 | 1,3+04                                |
| Lu 110    | 1,00 сут                                | П | 1,1-09 | 1,8+07 | 7,3+03                                |
| La-141    | 3,93 час                                | Б | 6,7-11 | 3,0+08 | 1,2+05                                |
| Lu 141    | 3,73 fac                                | П | 1,5-10 | 1,3+08 | 5,3+04                                |
| La-142    | 1,54 час                                | Б | 5,6-11 | 3,6+08 | 1,4+05                                |
| Δα-1-42   | 1,54 440                                | П | 9,3-11 | 2,2+08 | 8,6+04                                |
| La-143    | 0,237 час                               | Б | 1,2-11 | 1,7+09 | 6,7+05                                |
| La-143    | 0,237 440                               | П | 2,2-11 | 9,1+08 | 3,6+05                                |
| Ce-134    | 3,00 сут                                | П | 1,3-09 | 1,5+07 | 6,2+03                                |
| CC-134    | 3,00 cy1                                | M | 1,3-09 | 1,5+07 | 6,2+03                                |
| Ce-13     | 17,6 час                                | П | 4,9-10 | 4,1+07 | 1,6+04                                |
| C6-13     | 17,0 4ac                                | M | 5,1-10 | 3,9+07 | 1,6+04                                |
| Ce-137    | 9,00 час                                | П | 1,0-11 | 2,0+09 | 8,0+05                                |
| C6-137    | 9,00 час                                | M | 5,1-10 | 3,9+07 | · · · · · · · · · · · · · · · · · · · |
| Ce-137m   | 1.42 orm                                | П | 4,0-10 | · ·    | 1,6+04<br>2,0+04                      |
| Ce-13/III | 1,43 сут                                |   |        | 5,0+07 | · ·                                   |
| G- 120    | 120                                     | M | 4,3-10 | 4,7+07 | 1,9+04                                |
| Ce-139    | 138 сут                                 | П | 1,6-09 | 1,3+07 | 5,0+03                                |
| Co. 141   | 22.5                                    | М | 1,8-09 | 1,1+07 | 4,4+03                                |
| Ce-141    | 32,5 сут                                | П | 3,1-09 | 6,5+06 | 2,6+03                                |
| G 142     | 1.20                                    | M | 3,6-09 | 5,6+06 | 2,2+03                                |
| Ce-143    | 1,38 сут                                | П | 7,4-10 | 2,7+07 | 1,1+04                                |
| 0.144     | 20.4                                    | M | 8,1-10 | 2,5+07 | 9,9+03                                |
| Ce-144    | 284 сут                                 | П | 3,4-08 | 5,9+05 | 2,4+02                                |

|            |            | M | 4,9-08 | 4,1+05 | 1,6+02 |
|------------|------------|---|--------|--------|--------|
| Pr-136     | 0,218 час  | П | 1,4-11 | 1,4+09 | 5,7+05 |
| -1 100     | ,210 luc   | M | 1,5-11 | 1,3+09 | 5,3+05 |
| Pr-137     | 1,28 час   | П | 2,1-11 | 9,5+08 | 3,8+05 |
| 11 157     | 1,20 140   | M | 2,2-11 | 9,1+08 | 3,6+05 |
| Pr-138m    | 2,10 час   | П | 7,6-11 | 2,6+08 | 1,1+05 |
| 11-130111  | 2,10 440   | M | 7,9-11 | 2,5+08 | 1,0+05 |
| Pr-139     | 4,51 час   | П | 1,9-11 | 1,1+09 | 4,2+05 |
| P1-139     | 4,31 4ac   |   |        | · ·    |        |
| D 140      | 10.1       | M | 2,0-11 | 1,0+09 | 4,0+05 |
| Pr-142     | 19,1 час   | П | 5,3-10 | 3,8+07 | 1,5+04 |
|            |            | M | 5,6-10 | 3,6+07 | 1,4+04 |
| Pr-142m    | 0,243 час  | П | 6,7-12 | 3,0+09 | 1,2+06 |
|            |            | M | 7,1-12 | 2,8+09 | 1,1+06 |
| Pr-143     | 13,6 сут   | П | 2,1-09 | 9,5+06 | 3,8+03 |
|            |            | M | 2,3-09 | 8,7+06 | 3,5+03 |
| Pr-144     | 0,288 час  | П | 1,8-11 | 1,1+09 | 4,4+05 |
|            |            | M | 1,9-11 | 1,1+09 | 4,2+05 |
| Pr-145     | 5,98 час   | П | 1,6-10 | 1,3+08 | 5,0+04 |
|            |            | M | 1,7-10 | 1,2+08 | 4,7+04 |
| Pr-147     | 0,227 час  | П | 1,8-11 | 1,1+09 | 4,4+05 |
|            |            | M | 1,9-11 | 1,1+09 | 4,2+05 |
| Nd-136     | 0,844 час  | П | 5,3-11 | 3,8+08 | 1,5+05 |
|            |            | M | 5,6-11 | 3,6+08 | 1,4+05 |
| Nd-138     | 5,04 час   | П | 2,4-10 | 8,3+07 | 3,3+04 |
|            |            | M | 2,6-10 | 7,7+07 | 3,1+04 |
| Nd-139     | 0,495 час  | П | 1,0-11 | 2,0+09 | 8,0+05 |
| Nd-139m    | 5,50 час   | П | 1,5-10 | 1,3+08 | 5,3+04 |
|            |            | M | 1,6-10 | 1,3+08 | 5,0+04 |
| Nd-141     | 2,49 час   | П | 5,1-12 | 3,9+09 | 1,6+06 |
|            |            | M | 5,3-12 | 3,8+09 | 1,5+06 |
| Nd-147     | 11,0 сут   | П | 2,0-09 | 1,0+07 | 4,0+03 |
|            | , ,        | M | 2,3-09 | 8,7+06 | 3,5+03 |
| Nd-149     | 1,73 час   | П | 8,5-11 | 2,4+08 | 9,4+04 |
|            | ,          | M | 9,0-11 | 2,2+08 | 8,9+04 |
| Nd-151     | 0,207 час  | П | 1,7-11 | 1,2+09 | 4,7+05 |
|            | 2,20, 140  | M | 1,8-11 | 1,1+09 | 4,4+05 |
| Pm-141     | 0,348 час  | П | 1,5-11 | 1,3+09 | 5,3+05 |
| ! !        | 0,5 10 100 | M | 1,6-11 | 1,3+09 | 5,0+05 |
| Pm-143     | 265 сут    | П | 1,4-09 | 1,4+07 | 5,7+03 |
| 1 111-143  | 203 Cy F   | M | 1,4-09 |        | 6,2+03 |
| Drag 1 4 4 | 262        |   |        | 1,5+07 | · ·    |
| Pm-144     | 363 сут    | П | 7,8-09 | 2,6+06 | 1,0+03 |

|           |                       | M | 7,0-09 | 2,9+06 | 1,1+03 |
|-----------|-----------------------|---|--------|--------|--------|
| Pm-145    | 17,7 лет              | П | 3,4-09 | 5,9+06 | 2,4+03 |
|           | ,                     | M | 2,1-09 | 9,5+06 | 3,8+03 |
| Pm-146    | 5,53 лет              | П | 1,9-08 | 1,1+06 | 4,2+02 |
|           | ,                     | M | 1,6-08 | 1,3+06 | 5,0+02 |
| Pm-147    | 2,62 лет              | П | 4,7-09 | 4,3+06 | 1,7+03 |
|           | ,                     | M | 4,6-09 | 4,3+06 | 1,7+03 |
| Pm-148    | 5,37 сут              | П | 2,0-09 | 1,0+07 | 4,0+03 |
|           | , ,                   | M | 2,1-09 | 9,5+06 | 3,8+03 |
| Pm-148m   | 41,3 сут              | П | 4,9-09 | 4,1+06 | 1,6+03 |
|           | J                     | M | 5,4-09 | 3,7+06 | 1,5+03 |
| Pm-149    | 2,21 сут              | П | 6,6-10 | 3,0+07 | 1,2+04 |
| 1111 1 1) | _,                    | M | 7,2-10 | 2,8+07 | 1,1+04 |
| Pm-150    | 2,68 час              | П | 1,3-10 | 1,5+08 | 6,2+04 |
| 1111100   | 2,00 140              | M | 1,4-10 | 1,4+08 | 5,7+04 |
| Pm-151    | 1,18 сут              | П | 4,2-10 | 4,8+07 | 1,9+04 |
| 1111 131  | 1,10 Cy 1             | M | 4,5-10 | 4,4+07 | 1,8+04 |
| Sm-141    | 0,170 час             | П | 1,6-11 | 1,3+09 | 5,0+05 |
| Sm-141m   | 0,377 час             | П | 3,4-11 | 5,9+08 | 2,4+05 |
| Sm-141111 | 1,21 час              | П | 7,4-11 | 2,7+08 | 1,1+05 |
| Sm-145    | 340 cyt               | П | 1,5-09 | 1,3+07 | 5,3+03 |
| Sm-146    | 1,03+08 лет           | П | 9,9-06 | 2,0+03 | 8,1-01 |
| Sm-151    | 90,0 лет              | П | 3,7-09 | 5,4+06 |        |
| Sm-153    |                       | П | 6,1-10 |        | 2,2+03 |
|           | 1,95 сут<br>0,368 час |   |        | 3,3+07 |        |
| Sm-155    | · ·                   | П | 1,7-11 | 1,2+09 | 4,7+05 |
| Sm-156    | 9,40 час              | П | 2,1-10 | 9,5+07 | 3,8+04 |
| Eu-145    | 5,94 сут              | П | 5,6-10 | 3,6+07 | 1,4+04 |
| Eu-146    | 4,61 сут              | П | 8,2-10 | 2,4+07 | 9,8+03 |
| Eu-147    | 24,0 сут              | П | 1,0-09 | 2,0+07 | 8,0+03 |
| Eu-148    | 54,5 сут              | П | 2,7-09 | 7,4+06 | 3,0+03 |
| Eu-149    | 93,1 сут              | П | 2,7-10 | 7,4+07 | 3,0+04 |
| Eu-150    | 34,2 лет              | П | 5,0-08 | 4,0+05 | 1,6+02 |
| Eu-150    | 12,6 час              | П | 1,9-10 | 1,1+08 | 4,2+04 |
| Eu-152    | 13,3 лет              | П | 3,9-08 | 5,1+05 | 2,1+02 |
| Eu-152m   | 9,32 час              | П | 2,2-10 | 9,1+07 | 3,6+04 |
| Eu-154    | 8,80 лет              | П | 5,0-08 | 4,0+05 | 1,6+02 |
| Eu-155    | 4,96 лет              | П | 6,5-09 | 3,1+06 | 1,2+03 |
| Eu-156    | 15,2 сут              | П | 3,3-09 | 6,1+06 | 2,4+03 |
| Eu-157    | 15,1 час              | П | 3,2-10 | 6,3+07 | 2,5+04 |
| Eu-158    | 0,765 час             | П | 4,8-11 | 4,2+08 | 1,7+05 |
| Gd-145    | 0,382 час             | Б | 1,5-11 | 1,3+09 | 5,3+05 |
|           |                       | П | 2,1-11 | 9,5+08 | 3,8+05 |

| Gd-146  | 48,3 сут    | Б | 4,4-09 | 4,5+06 | 1,8+03 |
|---------|-------------|---|--------|--------|--------|
|         |             | П | 6,0-09 | 3,3+06 | 1,3+03 |
| Gd-147  | 1,59 сут    | Б | 2,7-10 | 7,4+07 | 3,0+04 |
|         |             | П | 4,1-10 | 4,9+07 | 2,0+04 |
| Gd-148  | 93,0 лет    | Б | 2,5-05 | 8,0+02 | 3,2-01 |
|         |             | П | 1,1-05 | 1,8+03 | 7,3-01 |
| Gd-149  | 9,40 сут    | Б | 2,6-10 | 7,7+07 | 3,1+04 |
|         |             | П | 7,0-10 | 2,9+07 | 1,1+04 |
| Gd-151  | 120 сут     | Б | 7,8-10 | 2,6+07 | 1,0+04 |
|         |             | П | 8,1-10 | 2,5+07 | 9,9+03 |
| Gd-152  | 1,08+14 лет | Б | 1,9-05 | 1,1+03 | 4,2-01 |
|         |             | П | 7,4-06 | 2,7+03 | 1,1    |
| Gd-153  | 242 сут     | Б | 2,1-09 | 9,5+06 | 3,8+03 |
|         |             | П | 1,9-09 | 1,1+07 | 4,2+03 |
| Gd-159  | 18,6 час    | Б | 1,1-10 | 1,8+08 | 7,3+04 |
|         |             | П | 2,7-10 | 7,4+07 | 3,0+04 |
| Tb-154  | 21,4 час    | П | 3,8-10 | 5,3+07 | 2,1+04 |
| Tb-147  | 1,65 час    | П | 7,9-11 | 2,5+08 | 1,0+05 |
| Tb-149  | 4,15 час    | П | 4,3-09 | 4,7+06 | 1,9+03 |
| Tb-150  | 3,27 час    | П | 1,1-10 | 1,8+08 | 7,3+04 |
| Tb-151  | 17,6 час    | П | 2,3-10 | 8,7+07 | 3,5+04 |
| Tb-153  | 2,34 сут    | П | 2,0-10 | 1,0+08 | 4,0+04 |
| Tb-154  | 21,4 час    | П | 3,8-10 | 5,3+07 | 2,1+04 |
| Tb-155  | 5,32 сут    | П | 2,1-10 | 9,5+07 | 3,8+04 |
| Tb-156  | 5,34 сут    | П | 1,2-09 | 1,7+07 | 6,7+03 |
| Tb-156m | 1,02 сут    | П | 2,0-10 | 1,0+08 | 4,0+04 |
| Tb-156m | 5,00 час    | П | 9,2-11 | 2,2+08 | 8,7+04 |
| Tb-157  | 1,50+02 лет | П | 1,1-09 | 1,8+07 | 7,3+03 |
| Tb-158  | 1,50+02 лет | П | 4,3-08 | 4,7+05 | 1,9+02 |
| Tb-160  | 72,3 сут    | П | 6,6-09 | 3,0+06 | 1,2+03 |
| Tb-161  | 6,91 сут    | П | 1,2-09 | 1,7+07 | 6,7+03 |
| Dy-155  | 10,0 час    | П | 8,0-11 | 2,5+08 | 1,0+05 |
| Dy-157  | 8,10 час    | П | 3,2-11 | 6,3+08 | 2,5+05 |
| Dy-159  | 144 сут     | П | 3,5-10 | 5,7+07 | 2,3+04 |
| Dy-165  | 2,33 час    | П | 6,1-11 | 3,3+08 | 1,3+05 |
| Dy-166  | 3,40 сут    | П | 1,8-09 | 1,1+07 | 4,4+03 |
| Ho-155  | 0,800 час   | П | 2,0-11 | 1,0+09 | 4,0+05 |
| Ho-157  | 0,210 час   | П | 4,5-12 | 4,4+09 | 1,8+06 |
| Ho-159  | 0,550 час   | П | 6,3-12 | 3,2+09 | 1,3+06 |
| Ho-161  | 2,50 час    | П | 6,3-12 | 3,2+09 | 1,3+06 |
| Ho-162  | 0,250 час   | П | 2,9-12 | 6,9+09 | 2,8+06 |

| Ho-162m  | 1,13 час    | П | 2,2-11           | 9,1+08           | 3,6+05 |
|----------|-------------|---|------------------|------------------|--------|
| Ho-164   | 0,483 час   | П | 8,6-12           | 2,3+09           | 9,3+05 |
| Ho-164m  | 0,625 час   | П | 1,2-11           | 1,7+09           | 6,7+05 |
| Ho-166   | 1,12 сут    | П | 6,6-10           | 3,0+07           | 1,2+04 |
| Ho-166m  | 1,20+03 лет | П | 1,1-07           | 1,8+05           | 7,3+01 |
| Ho-167   | 3,10 час    | П | 7,1-11           | 2,8+08           | 1,1+05 |
| Er-161   | 3,24 час    | П | 5,1-11           | 3,9+08           | 1,6+05 |
| Er-165   | 10,4 час    | П | 8,3-12           | 2,4+09           | 9,6+05 |
| Er-169   | 9,30 сут    | П | 9,8-10           | 2,0+07           | 8,2+03 |
| Ho-162   | 0,250 час   | П | 2,9-12           | 6,9+09           | 2,8+06 |
| Er-171   | 7,52 час    | П | 2,2-10           | 9,1+07           | 3,6+04 |
| Er-172   | 2,05 сут    | П | 1,1-09           | 1,8+07           | 7,3+03 |
| Tm-162   | 0,362 час   | П | 1,6-11           | 1,3+09           | 5,0+05 |
| Tm-166   | 7,70 час    | П | 1,8-10           | 1,1+08           | 4,4+04 |
| Tm-167   | 9,24 сут    | П | 1,1-09           | 1,8+07           | 7,3+03 |
| Tm-170   | 129 сут     | П | 6,6-09           | 3,0+06           | 1,2+03 |
| Tm-171   | 1,92 лет    | П | 1,3-09           | 1,5+07           | 6,2+03 |
| Tm-172   | 2,65 сут    | П | 1,1-09           | 1,8+07           | 7,3+03 |
| Tm-173   | 8,24 час    | П | 1,8-10           | 1,1+08           | 4,4+04 |
| Tm-175   | 0,253 час   | П | 1,9-11           | 1,1+09           | 4,2+05 |
| Yb-162   | 0,315 час   | П | 1,4-11           | 1,4+09           | 5,7+05 |
| 10 102   | 0,510 100   | M | 1,4-11           | 1,4+09           | 5,7+05 |
| Yb-166   | 2,36 сут    | П | 7,2-10           | 2,8+07           | 1,1+04 |
| 10 100   | 2,50 0,1    | M | 7,6-10           | 2,6+07           | 1,1+04 |
| Yb-167   | 0,292 час   | П | 6,5-12           | 3,1+09           | 1,2+06 |
| 10 107   | 0,272 fac   | M | 6,9-12           | 2,9+09           | 1,2+06 |
| Yb-169   | 32,0 сут    | П | 2,4-09           | 8,3+06           | 3,3+03 |
| 10-107   | 32,0 Cy 1   | M | 2,8-09           | 7,1+06           | 2,9+03 |
| Yb-175   | 4,19 сут    | П | 6,3-10           | 3,2+07           | 1,3+04 |
| 10-173   | 4,17 Cy 1   | M | 7,0-10           | 2,9+07           | 1,1+04 |
| Yb-177   | 1,90 час    | П | 6,4-11           | 3,1+08           | 1,3+05 |
| 10-177   | 1,90 час    | M | 6,9-11           | 2,9+08           | 1,2+05 |
| Yb-178   | 1,23 час    | П | 7,1-11           | 2,8+08           | 1,1+05 |
| 10-176   | 1,23 4ac    | M | 7,6-11           | 2,6+08           | 1,1+05 |
| I 11 160 | 1.42 avm    | П |                  |                  | · ·    |
| Lu-169   | 1,42 сут    | M | 3,5-10<br>3,8-10 | 5,7+07<br>5,3+07 | 2,3+04 |
| I n 170  | 2.00 ~~     |   |                  |                  |        |
| Lu-170   | 2,00 сут    | М | 6,4-10           | 3,1+07           | 1,3+04 |
| I., 171  | 0.22        | М | 6,7-10           | 3,0+07           | 1,2+04 |
| Lu-171   | 8,22 сут    | П | 7,6-10           | 2,6+07           | 1,1+04 |
| I 170    | (70         | M | 8,3-10           | 2,4+07           | 9,6+03 |
| Lu-172   | 6,70 сут    | П | 1,4-09           | 1,4+07           | 5,7+03 |
|          |             | M | 1,5-09           | 1,3+07           | 5,3+03 |

| Lu-173  | 1,37 лет                                | П | 2,0-09 | 1,0+07 | 4,0+03  |
|---------|-----------------------------------------|---|--------|--------|---------|
|         |                                         | M | 2,3-09 | 8,7+06 | 3,5+03  |
| Lu-174  | 3,31 лет                                | П | 4,0-09 | 5,0+06 | 2,0+03  |
|         |                                         | M | 3,9-09 | 5,1+06 | 2,1+03  |
| Lu-174m | 142 сут                                 | П | 3,4-09 | 5,9+06 | 2,4+03  |
|         | -                                       | M | 1,2-10 | 1,7+08 | 6,7+04  |
|         |                                         | M | 3,8-09 | 5,3+06 | 2,1+03  |
| Lu-176  | 3,60+10                                 | П | 6,6-08 | 3,0+05 | 1,2+02  |
|         | ·                                       | M | 1,2-10 | 1,7+08 | 6,7+04  |
|         |                                         | M | 5,2-08 | 3,8+05 | 1,5+02  |
| Lu-176m | 3,68 час                                | П | 1,1-10 | 1,8+08 | 7,3+04  |
|         | ,                                       | M | 1,2-10 | 1,7+08 | 6,7+04  |
| Lu-177  | 6,71 сут                                | П | 1,0-09 | 2,0+07 | 8,0+03  |
|         | , ,                                     | M | 1,1-09 | 1,8+07 | 7,3+03  |
| Lu-177m | 161 сут                                 | П | 1,2-08 | 1,7+06 | 6,7+02  |
|         | 3                                       | M | 1,5-08 | 1,3+06 | 5,3+02  |
| Lu-178  | 0,473 час                               | П | 2,5-11 | 8,0+08 | 3,2+05  |
|         | ,                                       | M | 2,6-11 | 7,7+08 | 3,1+05  |
| Lu-178m | 0,378 час                               | П | 3,3-11 | 6,1+08 | 2,4+05  |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | M | 3,5-11 | 5,7+08 | 2,3+05  |
| Lu-179  | 4,59 час                                | П | 1,1-10 | 1,8+08 | 7,3+04  |
| 24 17)  | 1,65 100                                | M | 1,2-10 | 1,7+08 | 6,7+04  |
| Hf-170  | 16,0 час                                | Б | 1,7-10 | 1,2+08 | 4,7+04  |
|         | 10,0 100                                | П | 3,2-10 | 6,3+07 | 2,5+04  |
| Hf-172  | 1,87 лет                                | Б | 3,2-08 | 6,3+05 | 2,5+02  |
|         | 1,0,7 0101                              | П | 1,9-08 | 1,1+06 | 4,2+02  |
| Hf-173  | 24,0 час                                | Б | 7,9-11 | 2,5+08 | 1,0+05  |
|         |                                         | П | 1,6-10 | 1,3+08 | 5,0+04  |
| Hf-175  | 70,0 сут                                | Б | 7,2-10 | 2,8+07 | 1,1+04  |
|         | 7 0,0 0,1                               | П | 1,1-09 | 1,8+07 | 7,3+03  |
| Hf-177m | 0,856 час                               | Б | 4,7-11 | 4,3+08 | 1,7+05  |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 9,2-11 | 2,2+08 | 8,7+04  |
| Hf-178m | 31,0 лет                                | Б | 2,6-07 | 7,7+04 | 3,1+01  |
|         | , , , , ,                               | П | 1,1-07 | 1,8+05 | 7,3+01  |
| Hf-179m | 25,1 сут                                | Б | 1,1-09 | 1,8+07 | 7,3+03  |
| , , ,   | -,,-                                    | П | 3,6-09 | 5,6+06 | 2,2+03  |
| Hf-180m | 5,50 час                                | Б | 6,4-11 | 3,1+08 | 1,3+05  |
|         | -,                                      | П | 1,4-10 | 1,4+08 | 5,7+04  |
| Hf-181  | 42,4 сут                                | Б | 1,4-09 | 1,4+07 | 5,7+03  |
|         | .=, : • ; :                             | П | 4,7-09 | 4,3+06 | 1,7+03  |
| Hf-182  | 9,00+06 лет                             | Б | 3,0-07 | 6,7+04 | 2,7+01  |
| 111 102 | 2,00 · 00 HC1                           |   | 3,0 07 | 5,7.04 | 2,7 101 |

|         |           | П | 1,2-07 | 1,7+05 | 6,7+01 |
|---------|-----------|---|--------|--------|--------|
|         |           | M | 1,2-10 | 1,7+08 | 6,7+04 |
| Hf-182m | 1,02 час  | Б | 2,3-11 | 8,7+08 | 3,5+05 |
|         |           | П | 4,7-11 | 4,3+08 | 1,7+05 |
| Hf-183  | 1,07 час  | Б | 2,6-11 | 7,7+08 | 3,1+05 |
| 111 100 | 1,0 / 140 | П | 5,8-11 | 3,4+08 | 1,4+05 |
| Hf-184  | 4,12 час  | Б | 1,3-10 | 1,5+08 | 6,2+04 |
| 111 101 | 1,12 140  | П | 3,3-10 | 6,1+07 | 2,4+04 |
| Ta-172  | 0,613 час | П | 3,4-11 | 5,9+08 | 2,4+05 |
| 14 172  | 0,013 lac | M | 3,6-11 | 5,6+08 | 2,2+05 |
| Ta-173  | 3,65 час  | П | 1,1-10 | 1,8+08 | 7,3+04 |
| 14-1/3  | 3,03 4ac  | M | 1,2-10 | 1,7+08 | 6,7+04 |
| To 174  | 1 20      |   |        |        |        |
| Ta-174  | 1,20 час  | П | 4,2-11 | 4,8+08 | 1,9+05 |
| T. 155  | 10.5      | M | 4,4-11 | 4,5+08 | 1,8+05 |
| Ta-175  | 10,5 час  | П | 1,3-10 | 1,5+08 | 6,2+04 |
|         |           | M | 1,4-10 | 1,4+08 | 5,7+04 |
| Ta-176  | 8,08 час  | П | 2,0-10 | 1,0+08 | 4,0+04 |
|         |           | M | 2,1-10 | 9,5+07 | 3,8+04 |
| Ta-177  | 2,36 сут  | П | 9,3-11 | 2,2+08 | 8,6+04 |
|         |           | M | 1,0-10 | 2,0+08 | 8,0+04 |
| Ta-178  | 2,20 час  | П | 6,6-11 | 3,0+08 | 1,2+05 |
|         |           | M | 6,9-11 | 2,9+08 | 1,2+05 |
| Ta-179  | 1,82 лет  | П | 2,0-10 | 1,0+08 | 4,0+04 |
|         |           | M | 5,2-10 | 3,8+07 | 1,5+04 |
| Ta-180  | 1,00+13   | П | 6,0-09 | 3,3+06 | 1,3+03 |
|         |           | M | 2,4-08 | 8,3+05 | 3,3+02 |
| Ta-180m | 8,10 час  | П | 4,4-11 | 4,5+08 | 1,8+05 |
|         |           | M | 4,7-11 | 4,3+08 | 1,7+05 |
| Ta-182  | 115 сут   | П | 7,2-09 | 2,8+06 | 1,1+03 |
|         |           | M | 9,7-09 | 2,1+06 | 8,2+02 |
| Ta-182m | 0,264 час | П | 2,1-11 | 9,5+08 | 3,8+05 |
|         |           | M | 2,2-11 | 9,1+08 | 3,6+05 |
| Ta-183  | 5,10 сут  | П | 1,8-09 | 1,1+07 | 4,4+03 |
|         |           | M | 2,2-11 | 9,1+08 | 3,6+05 |
| Ta-184  | 8,70 час  | П | 4,1-10 | 4,9+07 | 2,0+04 |
|         |           | M | 4,4-10 | 4,5+07 | 1,8+04 |
| Ta-185  | 0,816 час | П | 4,6-11 | 4,3+08 | 1,7+05 |
|         |           | M | 4,9-11 | 4,1+08 | 1,6+05 |
| Ta-186  | 0,175 час | П | 1,8-11 | 1,1+09 | 4,4+05 |
|         |           | M | 1,9-11 | 1,1+09 | 4,2+05 |
| W-176   | 2,30 час  | Б | 4,4-11 | 4,5+08 | 1,8+05 |
| W-177   | 2,25 час  | Б | 2,6-11 | 7,7+08 | 3,1+05 |

| W-178   | 21,7 сут    | Б | 7,6-11 | 2,6+08 | 1,1+05 |
|---------|-------------|---|--------|--------|--------|
| W-179   | 0,625 час   | Б | 9,9-13 | 2,0+10 | 8,1+06 |
| W-181   | 121 сут     | Б | 2,8-11 | 7,1+08 | 2,9+05 |
| W-185   | 75,1 сут    | Б | 1,4-10 | 1,4+08 | 5,7+04 |
| W-187   | 23,9 час    | Б | 2,0-10 | 1,0+08 | 4,0+04 |
| W-188   | 69,4 сут    | Б | 5,9-10 | 3,4+07 | 1,4+04 |
| Re-177  | 0,233 час   | Б | 1,0-11 | 2,0+09 | 8,0+05 |
|         |             | П | 1,4-11 | 1,4+09 | 5,7+05 |
| Re-178  | 0,220 час   | Б | 1,1-11 | 1,8+09 | 7,3+05 |
|         |             | П | 1,5-11 | 1,3+09 | 5,3+05 |
| Re-181  | 20,0 час    | Б | 1,9-10 | 1,1+08 | 4,2+04 |
|         |             | П | 2,5-10 | 8,0+07 | 3,2+04 |
| Re-182  | 2,67 сут    | Б | 6,8-10 | 2,9+07 | 1,2+04 |
|         |             | П | 1,3-09 | 1,5+07 | 6,2+03 |
| Re-182  | 12,7 час    | Б | 1,5-10 | 1,3+08 | 5,3+04 |
|         |             | П | 2,0-10 | 1,0+08 | 4,0+04 |
| Re-184  | 38,0 сут    | Б | 4,6-10 | 4,3+07 | 1,7+04 |
|         |             | П | 1,8-09 | 1,1+07 | 4,4+03 |
| Re-184m | 165 сут     | Б | 6,1-10 | 3,3+07 | 1,3+04 |
|         |             | П | 6,1-09 | 3,3+06 | 1,3+03 |
| Re-186  | 3,78 сут    | Б | 5,3-10 | 3,8+07 | 1,5+04 |
|         |             | П | 1,1-09 | 1,8+07 | 7,3+03 |
| Re-186m | 2,00+05 лет | Б | 8,5-10 | 2,4+07 | 9,4+03 |
|         |             | П | 1,1-08 | 1,8+06 | 7,3+02 |
| Re-188  | 17,0 час    | Б | 4,7-10 | 4,3+07 | 1,7+04 |
|         |             | П | 5,5-10 | 3,6+07 | 1,5+04 |
| Re-188m | 0,310 час   | Б | 1,0-11 | 2,0+09 | 8,0+05 |
|         |             | П | 1,4-11 | 1,4+09 | 5,7+05 |
| Re-189  | 1,01 сут    | Б | 2,7-10 | 7,4+07 | 3,0+04 |
| Os-180  | 0,366 час   | Б | 8,8-12 | 2,3+09 | 9,1+05 |
|         |             | П | 4,3-10 | 4,7+07 | 1,9+04 |
|         |             | П | 1,4-11 | 1,4+09 | 5,7+05 |
|         |             | M | 1,5-11 | 1,3+09 | 5,3+05 |
| Os-181  | 1,75 час    | Б | 3,6-11 | 5,6+08 | 2,2+05 |
|         |             | П | 6,3-11 | 3,2+08 | 1,3+05 |
|         |             | M | 6,6-11 | 3,0+08 | 1,2+05 |
| Os-182  | 22,0 час    | Б | 1,9-10 | 1,1+08 | 4,2+04 |
|         |             | П | 3,7-10 | 5,4+07 | 2,2+04 |
|         |             | M | 3,9-10 | 5,1+07 | 2,1+04 |
| Os-185  | 94,0 сут    | Б | 1,1-09 | 1,8+07 | 7,3+03 |
|         |             | П | 1,2-09 | 1,7+07 | 6,7+03 |

|           |           | M | 1,5-09 | 1,3+07 | 5,3+03 |
|-----------|-----------|---|--------|--------|--------|
| Os-189m   | 6,00 час  | Б | 2,7-12 | 7,4+09 | 3,0+06 |
| 05 107111 | 0,00 140  | П | 5,1-12 | 3,9+09 | 1,6+06 |
|           |           | M | 5,4-12 | 3,7+09 | 1,5+06 |
| Os-191    | 15,4 сут  | Б | 2,5-10 | 8,0+07 | 3,2+04 |
| 03-171    | 15,4 сут  | П | 1,5-09 | 1,3+07 | 5,3+03 |
|           |           | M | 1,8-09 | 1,1+07 | 4,4+03 |
| Os-191m   | 13,0 час  | Б | 2,6-11 | 7,7+08 | 3,1+05 |
| 08-191111 | 13,0 4ac  | П | 1,3-10 | 1,5+08 | 6,2+04 |
|           |           | M |        |        | · ·    |
| 0- 102    | 1.25      |   | 1,5-10 | 1,3+08 | 5,3+04 |
| Os-193    | 1,25 сут  | Б | 1,7-10 | 1,2+08 | 4,7+04 |
|           |           | П | 4,7-10 | 4,3+07 | 1,7+04 |
|           |           | M | 5,1-10 | 3,9+07 | 1,6+04 |
| Os-194    | 6,00 лет  | Б | 1,1-08 | 1,8+06 | 7,3+02 |
|           |           | П | 2,0-08 | 1,0+06 | 4,0+02 |
|           |           | M | 7,9-08 | 2,5+05 | 1,0+02 |
| Ir-182    | 0,250 час | Б | 1,5-11 | 1,3+09 | 5,3+05 |
|           |           | П | 2,4-11 | 8,3+08 | 3,3+05 |
|           |           | M | 2,5-11 | 8,0+08 | 3,2+05 |
| Ir-184    | 3,02 час  | Б | 6,7-11 | 3,0+08 | 1,2+05 |
|           |           | П | 1,1-10 | 1,8+08 | 7,3+04 |
|           |           | M | 1,2-10 | 1,7+08 | 6,7+04 |
| Ir-185    | 14,0 час  | Б | 8,8-11 | 2,3+08 | 9,1+04 |
|           |           | П | 1,8-10 | 1,1+08 | 4,4+04 |
|           |           | M | 1,9-10 | 1,1+08 | 4,2+04 |
| Ir-182    | 0,250 час | Б | 1,5-11 | 1,3+09 | 5,3+05 |
|           |           | П | 3,2-10 | 6,3+07 | 2,5+04 |
| Ir-186    | 15,8 час  | Б | 1,8-10 | 1,1+08 | 4,4+04 |
|           |           | M | 3,3-10 | 6,1+07 | 2,4+04 |
| Ir-186    | 1,75 час  | Б | 2,5-11 | 8,0+08 | 3,2+05 |
|           |           | П | 4,3-11 | 4,7+08 | 1,9+05 |
|           |           | M | 4,5-11 | 4,4+08 | 1,8+05 |
| Ir-187    | 10,5 час  | Б | 4,0-11 | 5,0+08 | 2,0+05 |
|           |           | П | 7,5-11 | 2,7+08 | 1,1+05 |
|           |           | M | 7,9-11 | 2,5+08 | 1,0+05 |
| Ir-188    | 1,73 сут  | Б | 2,6-10 | 7,7+07 | 3,1+04 |
|           |           | П | 4,1-10 | 4,9+07 | 2,0+04 |
|           |           | M | 4,3-10 | 4,7+07 | 1,9+04 |
| Ir-189    | 13,3 сут  | Б | 1,1-10 | 1,8+08 | 7,3+04 |
|           | -         | П | 4,8-10 | 4,2+07 | 1,7+04 |
|           |           | M | 5,5-10 | 3,6+07 | 1,5+04 |
| Ir-190    | 12,1 сут  | Б | 7,9-10 | 2,5+07 | 1,0+04 |

|         |             | П | 2,0-09 | 1,0+07 | 4,0+03 |
|---------|-------------|---|--------|--------|--------|
|         |             | M | 2,3-09 | 8,7+06 | 3,5+03 |
| Ir-190m | 3,10 час    | Б | 5,3-11 | 3,8+08 | 1,5+05 |
|         |             | П | 8,3-11 | 2,4+08 | 9,6+04 |
|         |             | M | 8,6-11 | 2,3+08 | 9,3+04 |
| Ir-190m | 1,20 час    | Б | 3,7-12 | 5,4+09 | 2,2+06 |
|         |             | П | 9,0-12 | 2,2+09 | 8,9+05 |
|         |             | M | 1,0-11 | 2,0+09 | 8,0+05 |
| Ir-192  | 74,0 сут    | Б | 1,8-09 | 1,1+07 | 4,4+03 |
|         |             | П | 4,9-09 | 4,1+06 | 1,6+03 |
|         |             | M | 6,2-09 | 3,2+06 | 1,3+03 |
| Ir-192m | 2,41+02 лет | Б | 4,8-09 | 4,2+06 | 1,7+03 |
|         |             | П | 5,4-09 | 3,7+06 | 1,5+03 |
|         |             | M | 3,6-08 | 5,6+05 | 2,2+02 |
| Ir-193m | 11,9 сут    | Б | 1,0-10 | 2,0+08 | 8,0+04 |
|         |             | П | 1,0-09 | 2,0+07 | 8,0+03 |
|         |             | M | 1,2-09 | 1,7+07 | 6,7+03 |
| Ir-194  | 19,1 час    | Б | 2,2-10 | 9,1+07 | 3,6+04 |
|         |             | П | 5,3-10 | 3,8+07 | 1,5+04 |
|         |             | M | 5,6-10 | 3,6+07 | 1,4+04 |
| Ir-194m | 171 сут     | Б | 5,4-09 | 3,7+06 | 1,5+03 |
|         |             | П | 8,5-09 | 2,4+06 | 9,4+02 |
| Ir-195  | 2,50 час    | Б | 2,6-11 | 7,7+08 | 3,1+05 |
|         |             | M | 1,2-08 | 1,7+06 | 6,7+02 |
|         |             | П | 6,7-11 | 3,0+08 | 1,2+05 |
|         |             | M | 7,2-11 | 2,8+08 | 1,1+05 |
| Ir-195m | 3,80 час    | Б | 6,5-11 | 3,1+08 | 1,2+05 |
|         |             | П | 1,6-10 | 1,3+08 | 5,0+04 |
|         |             | M | 1,7-10 | 1,2+08 | 4,7+04 |
| Pt-186  | 2,00 час    | Б | 3,6-11 | 5,6+08 | 2,2+05 |
| Pt-188  | 10,2 сут    | Б | 4,3-10 | 4,7+07 | 1,9+04 |
| Pt-189  | 10,9 час    | Б | 4,1-11 | 4,9+08 | 2,0+05 |
| Pt-191  | 2,80 сут    | Б | 1,1-10 | 1,8+08 | 7,3+04 |
| Pt-193  | 50,0 лет    | Б | 2,1-11 | 9,5+08 | 3,8+05 |
| Pt-193m | 4,33 сут    | Б | 1,3-10 | 1,5+08 | 6,2+04 |
| Pt-195m | 4,02 сут    | Б | 1,9-10 | 1,1+08 | 4,2+04 |
| Pt-197  | 18,3 час    | Б | 9,1-11 | 2,2+08 | 8,8+04 |
| Pt-197m | 1,57 час    | Б | 2,5-11 | 8,0+08 | 3,2+05 |
| Pt-199  | 0,513 час   | Б | 1,3-11 | 1,5+09 | 6,2+05 |
| Pt-200  | 12,5 час    | Б | 2,4-10 | 8,3+07 | 3,3+04 |
| Au-193  | 17,6 час    | Б | 3,9-11 | 5,1+08 | 2,1+05 |

|            |           | П      | 1,1-10 | 1,8+08 | 7,3+04 |
|------------|-----------|--------|--------|--------|--------|
|            |           |        |        |        | · ·    |
| 104        | 1.64      | M      | 1,2-10 | 1,7+08 | 6,7+04 |
| Au-194     | 1,64 сут  | Б      | 1,5-10 | 1,3+08 | 5,3+04 |
|            |           | П      | 2,4-10 | 8,3+07 | 3,3+04 |
|            |           | M      | 2,5-10 | 8,0+07 | 3,2+04 |
| Au-195     | 183 сут   | Б      | 7,1-11 | 2,8+08 | 1,1+05 |
|            |           | П      | 1,0-09 | 2,0+07 | 8,0+03 |
|            |           | M      | 1,6-09 | 1,3+07 | 5,0+03 |
| Au-198     | 2,69 сут  | Б      | 2,3-10 | 8,7+07 | 3,5+04 |
|            |           | П      | 7,6-10 | 2,6+07 | 1,1+04 |
|            |           | M      | 8,4-10 | 2,4+07 | 9,5+03 |
| Au-198m    | 2,30 сут  | Б      | 3,4-10 | 5,9+07 | 2,4+04 |
|            |           | П      | 1,7-09 | 1,2+07 | 4,7+03 |
|            |           | M      | 1,9-09 | 1,1+07 | 4,2+03 |
| Au-199     | 3,14 сут  | Б      | 1,1-10 | 1,8+08 | 7,3+04 |
|            |           | П      | 6,8-10 | 2,9+07 | 1,2+04 |
|            |           | П      | 1,7-11 | 1,2+09 | 4,7+05 |
| Au-200     | 0,807 час | Б      | 1,7-11 | 1,2+09 | 4,7+05 |
|            |           | П      | 3,5-11 | 5,7+08 | 2,3+05 |
|            |           | M      | 7,5-10 | 2,7+07 | 1,1+04 |
|            |           | M      | 3,6-11 | 5,6+08 | 2,2+05 |
| Au-200m    | 18,7 час  | Б      | 3,2-10 | 6,3+07 | 2,5+04 |
|            |           | П      | 6,9-10 | 2,9+07 | 1,2+04 |
|            |           | M      | 7,3-10 | 2,7+07 | 1,1+04 |
| Au-201     | 0,440 час | Б      | 9,2-12 | 2,2+09 | 8,7+05 |
|            |           | П      | 1,7-11 | 1,2+09 | 4,7+05 |
|            |           | M      | 1,8-11 | 1,1+09 | 4,4+05 |
| Hg-193     | 3,50 час  | Б (ор) | 2,6-11 | 7,7+08 | 3,1+05 |
|            |           | Б (но) | 2,8-11 | 7,1+08 | 2,9+05 |
|            |           | П (но) | 7,5-11 | 2,7+08 | 1,1+05 |
|            |           | Γ      | 1,1-09 | 1,8+07 | 7,3+03 |
| Hg-193m    | 11,1 час  | Б (ор) | 1,1-10 | 1,8+08 | 7,3+04 |
|            | ,         | Б (но) | 1,2-10 | 1,7+08 | 6,7+04 |
|            |           | П (но) | 2,6-10 | 7,7+07 | 3,1+04 |
|            |           | Γ      | 3,1-09 | 6,5+06 | 2,6+03 |
| Hg-194     | 2,60+02   | Б (ор) | 1,5-08 | 1,3+06 | 5,3+02 |
| <i>S</i> - | ,         | Б (но) | 1,3-08 | 1,5+06 | 6,2+02 |
|            |           | П (но) | 7,8-09 | 2,6+06 | 1,0+03 |
|            |           | Γ      | 4,0-08 | 5,0+05 | 2,0+02 |
| Hg-195     | 9,90 час  | Б (ор) | 2,4-11 | 8,3+08 | 3,3+05 |
| 0 -/0      | 7,70 140  | Б (но) | 2,7-11 | 7,4+08 | 3,0+05 |
|            |           | П (но) | 7,2-11 | 2,8+08 | 1,1+05 |

|           |             |        | 1.4.00 | 1.4.07 | 5.7102 |
|-----------|-------------|--------|--------|--------|--------|
| II.a. 105 | 1 72        | Γ      | 1,4-09 | 1,4+07 | 5,7+03 |
| Hg-195m   | 1,73 сут    | Б (ор) | 1,3-10 | 1,5+08 | 6,2+04 |
|           |             | Б (но) | 1,5-10 | 1,3+08 | 5,3+04 |
|           |             | П (но) | 5,1-10 | 3,9+07 | 1,6+04 |
|           |             | Γ      | 8,2-09 | 2,4+06 | 9,8+02 |
| Hg-197    | 2,67 сут    | Б (ор) | 5,0-11 | 4,0+08 | 1,6+05 |
|           |             | Б (но) | 6,0-11 | 3,3+08 | 1,3+05 |
|           |             | П (но) | 2,9-10 | 6,9+07 | 2,8+04 |
|           |             | Γ      | 4,4-09 | 4,5+06 | 1,8+03 |
| Hg-197m   | 23,8 час    | Б (ор) | 1,0-10 | 2,0+08 | 8,0+04 |
|           |             | Б (но) | 1,2-10 | 1,7+08 | 6,7+04 |
|           |             | П (но) | 5,1-10 | 3,9+07 | 1,6+04 |
|           |             | Γ      | 5,8-09 | 3,4+06 | 1,4+03 |
| Hg-199m   | 0,710 час   | Б (ор) | 1,6-11 | 1,3+09 | 5,0+05 |
|           |             | Б (но) | 1,6-11 | 1,3+09 | 5,0+05 |
|           |             | П (но) | 3,3-11 | 6,1+08 | 2,4+05 |
|           |             | Γ      | 1,8-10 | 1,1+08 | 4,4+04 |
| Hg-203    | 46,6 сут    | Б (ор) | 5,7-10 | 3,5+07 | 1,4+04 |
|           |             | Б (но) | 4,7-10 | 4,3+07 | 1,7+04 |
|           |             | П (но) | 2,3-09 | 8,7+06 | 3,5+03 |
|           |             | Γ      | 7,0-09 | 2,9+06 | 1,1+03 |
| Tl-194    | 0,550 час   | Б      | 4,8-12 | 4,2+09 | 1,7+06 |
| Tl-194m   | 0,546 час   | Б      | 2,0-11 | 1,0+09 | 4,0+05 |
| Tl-195    | 1,16 час    | Б      | 1,6-11 | 1,3+09 | 5,0+05 |
| Tl-197    | 2,84 час    | Б      | 1,5-11 | 1,3+09 | 5,3+05 |
| Tl-198    | 5,30 час    | Б      | 6,6-11 | 3,0+08 | 1,2+05 |
| Tl-198m   | 1,87 час    | Б      | 4,0-11 | 5,0+08 | 2,0+05 |
| Tl-199    | 7,42 час    | Б      | 2,0-11 | 1,0+09 | 4,0+05 |
| T1-200    | 1,09 сут    | Б      | 1,4-10 | 1,4+08 | 5,7+04 |
| T1-201    | 3,04 сут    | Б      | 4,7-11 | 4,3+08 | 1,7+05 |
| T1-202    | 12,2 сут    | Б      | 2,0-10 | 1,0+08 | 4,0+04 |
| T1-204    | 3,78 лет    | Б      | 4,4-10 | 4,5+07 | 1,8+04 |
| Pb-195m   | 0,263 час   | Б      | 1,7-11 | 1,2+09 | 4,7+05 |
| Pb-198    | 2,40 час    | Б      | 4,7-11 | 4,3+08 | 1,7+05 |
| Pb-199    | 1,50 час    | Б      | 2,6-11 | 7,7+08 | 3,1+05 |
| Pb-200    | 21,5 час    | Б      | 1,5-10 | 1,3+08 | 5,3+04 |
| Pb-201    | 9,40 час    | Б      | 6,5-11 | 3,1+08 | 1,2+05 |
| Pb-202    | 3,00+05 лет | Б      | 1,1-08 | 1,8+06 | 7,3+02 |
| Pb-202m   | 3,62 час    | Б      | 6,7-11 | 3,0+08 | 1,2+05 |
|           | · ·         |        |        |        |        |
| Pb-203    | 2,17 cyt    | Б      | 9,1-11 | 2,2+08 | 8,8+04 |
| Pb-205    | 1,43+07 лет | Б      | 3,4-10 | 5,9+07 | 2,4+04 |

| Pb-209    | 3,25 час                                | Б | 1,8-11 | 1,1+09 | 4,4+05           |
|-----------|-----------------------------------------|---|--------|--------|------------------|
| Pb-210    | 22,3 лет                                | Б | 8,9-07 | 2,2+04 | 9,0              |
| Pb-211    | 0,601 час                               | Б | 3,9-09 | 5,1+06 | 2,1+03           |
| Pb-212    | 10,6 час                                | Б | 1,9-08 | 1,1+06 | 4,2+02           |
| Pb-214    | 0,447 час                               | Б | 2,9-09 | 6,9+06 | 2,8+03           |
| Bi-200    | 0,606 час                               | Б | 2,4-11 | 8,3+08 | 3,3+05           |
|           |                                         | П | 3,4-11 | 5,9+08 | 2,4+05           |
| Bi-201    | 1,80 час                                | Б | 4,7-11 | 4,3+08 | 1,7+05           |
|           |                                         | П | 7,0-11 | 2,9+08 | 1,1+05           |
| Bi-202    | 1,67 час                                | Б | 4,6-11 | 4,3+08 | 1,7+05           |
|           |                                         | П | 5,8-11 | 3,4+08 | 1,4+05           |
| Bi-203    | 11,8 час                                | Б | 2,0-10 | 1,0+08 | 4,0+04           |
|           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | П | 2,8-10 | 7,1+07 | 2,9+04           |
| Bi-205    | 15,3 сут                                | Б | 4,0-10 | 5,0+07 | 2,0+04           |
|           | ,,-                                     | П | 9,2-10 | 2,2+07 | 8,7+03           |
| Bi-206    | 6,24 сут                                | Б | 7,9-10 | 2,5+07 | 1,0+04           |
| B1 200    | 0,2 1 0) 1                              | П | 1,7-09 | 1,2+07 | 4,7+03           |
| Bi-207    | 38,0 лет                                | Б | 5,2-10 | 3,8+07 | 1,5+04           |
| B1 20 /   | 30,0 1101                               | П | 5,2-09 | 3,8+06 | 1,5+03           |
| Bi-210    | 5,01 сут                                | Б | 1,1-09 | 1,8+07 | 7,3+03           |
| B1 210    | 3,01 Cy1                                | П | 8,4-08 | 2,4+05 | 9,5+01           |
| Bi-210m   | 3,00+06 лет                             | Б | 4,5-08 | 4,4+05 | 1,8+02           |
| DI-210III | 3,00 100 1101                           | П | 3,1-06 | 6,5+03 | 2,6              |
| Bi-212    | 1,01 час                                | Б | 9,3-09 | 2,2+06 | 8,6+02           |
| DI-212    | 1,01 -140                               | П | 3,0-08 | 6,7+05 | 2,7+02           |
| Bi-213    | 0,761 час                               | Б | 1,1-08 | 1,8+06 | 7,3+02           |
| DI-213    | 0,701 4ac                               | П | 2,9-08 | 6,9+05 | 2,8+02           |
| Bi-214    | 0,332 час                               | Б | 7,2-09 | 2,8+06 | 1,1+03           |
| DI-214    | 0,332 4ac                               | П | 1,4-08 | 1,4+06 | 5,7+02           |
| Po-203    | 0,612 час                               | Б | 2,5-11 | 8,0+08 | 3,2+05           |
| F0-203    | 0,012 4ac                               | П | 3,6-11 | 5,6+08 |                  |
| Po-205    | 1.90 нас                                | Б | 3,5-11 | 5,7+08 | 2,2+05<br>2,3+05 |
| P0-203    | 1,80 час                                |   |        | · ·    |                  |
| Do 207    | 5.92 220                                | Б | 6,4-11 | 3,1+08 | 1,3+05           |
| Po-207    | 5,83 час                                |   | 6,3-11 | 3,2+08 | 1,3+05           |
| D- 210    | 120                                     | П | 8,4-11 | 2,4+08 | 9,5+04           |
| Po-210    | 138 сут                                 | Б | 6,0-07 | 3,3+04 | 1,3+01           |
| A + 207   | 1.00                                    | П | 3,0-06 | 6,7+03 | 2,7              |
| At-207    | 1,80 час                                | Б | 3,5-10 | 5,7+07 | 2,3+04           |
| 4.011     | 7.21                                    | П | 2,1-09 | 9,5+06 | 3,8+03           |
| At-211    | 7,21 час                                | Б | 1,6-08 | 1,3+06 | 5,0+02           |
| E 000     | 0.510                                   | П | 9,8-08 | 2,0+05 | 8,2+01           |
| Fr-222    | 0,240 час                               | Б | 1,4-08 | 1,4+06 | 5,7+02           |

| Fr-223 | 0,363 час   | Б | 9,1-10 | 2,2+07 | 8,8+03 |
|--------|-------------|---|--------|--------|--------|
| Ra-223 | 11,4 сут    | П | 6,9-06 | 2,9+03 | 1,2    |
| Ra-224 | 3,66 сут    | П | 2,9-06 | 6,9+03 | 2,8    |
| Ra-225 | 14,8 сут    | П | 5,8-06 | 3,4+03 | 1,4    |
| Ra-226 | 1,60+03 лет | П | 3,2-06 | 6,3+03 | 2,5    |
| Ra-227 | 0,703 час   | П | 2,8-10 | 7,1+07 | 2,9+04 |
| Ra-228 | 5,75 лет    | П | 2,6-06 | 7,7+03 | 3,1    |
| Ac-224 | 2,90 час    | Б | 1,1-08 | 1,8+06 | 7,3+02 |
|        |             | П | 1,0-07 | 2,0+05 | 8,0+01 |
|        |             | M | 1,2-07 | 1,7+05 | 6,7+01 |
| Ac-225 | 10,0 сут    | Б | 8,7-07 | 2,3+04 | 9,2    |
|        |             | П | 6,9-06 | 2,9+03 | 1,2    |
|        |             | M | 7,9-06 | 2,5+03 | 1,0    |
| Ac-226 | 1,21 сут    | Б | 9,5-08 | 2,1+05 | 8,4+01 |
|        |             | П | 1,1-06 | 1,8+04 | 7,3    |
|        |             | M | 1,2-06 | 1,7+04 | 6,7    |
| Ac-227 | 21,8 лет    | Б | 5,4-04 | 3,7+01 | 1,5-02 |
|        |             | П | 2,1-04 | 9,5+01 | 3,8-02 |
|        |             | M | 6,6-05 | 3,0+02 | 1,2-01 |
| Ac-228 | 6,13 час    | Б | 2,5-08 | 8,0+05 | 3,2+02 |
|        |             | П | 1,6-08 | 1,3+06 | 5,0+02 |
|        |             | M | 1,4-08 | 1,4+06 | 5,7+02 |
| Th-226 | 0,515 час   | П | 5,5-08 | 3,6+05 | 1,5+02 |
|        |             | M | 5,9-08 | 3,4+05 | 1,4+02 |
| Th-227 | 18,7 сут    | П | 7,8-06 | 2,6+03 | 1,0    |
|        |             | M | 9,6-06 | 2,1+03 | 8,3-01 |
| Th-228 | 1,91 лет    | П | 3,1-05 | 6,5+02 | 2,6-01 |
|        |             | M | 3,9-05 | 5,1+02 | 2,1-01 |
| Th-229 | 7,34+03 лет | П | 9,9-05 | 2,0+02 | 8,1-02 |
|        |             | M | 6,5-05 | 3,1+02 | 1,2-01 |
| Th-230 | 7,70+04     | П | 4,0-05 | 5,0+02 | 2,0-01 |
|        |             | M | 1,3-05 | 1,5+03 | 6,2-01 |
| Th-231 | 1,06 сут    | П | 2,9-10 | 6,9+07 | 2,8+04 |
|        | -           | M | 3,2-10 | 6,3+07 | 2,5+04 |
| Th-232 | 1,40+10     | П | 4,2-05 | 4,8+02 | 1,9-01 |
|        |             | M | 2,3-05 | 8,7+02 | 3,5-01 |
| Th-234 | 24,1 сут    | П | 6,3-09 | 3,2+06 | 1,3+03 |
|        |             | M | 7,3-09 | 2,7+06 | 1,1+03 |
|        |             | M | 7,1-07 | 2,8+04 | 1,1+01 |
| Pa-230 | 17,4 сут    | П | 5,6-07 | 3,6+04 | 1,4+01 |
| · -    | , -J-       | M | 7,6-08 | 2,6+05 | 1,1+02 |

| Pa-227 | 0,638 час                               | П | 7,0-08 | 2,9+05    | 1,1+02    |
|--------|-----------------------------------------|---|--------|-----------|-----------|
|        |                                         | M | 7,6-08 | 2,6+05    | 1,1+02    |
| Pa-228 | 22,0 час                                | П | 5,9-08 | 3,4+05    | 1,4+02    |
|        |                                         | M | 6,9-08 | 2,9+05    | 1,2+02    |
| Pa-230 | 17,4 сут                                | П | 5,6-07 | 3,6+04    | 1,4+01    |
|        |                                         | M | 7,1-07 | 2,8+04    | 1,1+01    |
| Pa-231 | 3,27+04 лет                             | П | 1,3-04 | 1,5+02    | 6,2-02    |
|        | ,                                       | M | 3,2-05 | 6,3+02    | 2,5-01    |
| Pa-232 | 1,31 сут                                | П | 9,5-09 | 2,1+06    | 8,4+02    |
|        | , ,                                     | M | 3,2-09 | 6,3+06    | 2,5+03    |
| Pa-233 | 27,0 сут                                | П | 3,1-09 | 6,5+06    | 2,6+03    |
|        |                                         | M | 3,7-09 | 5,4+06    | 2,2+03    |
| Pa-234 | 6,70 час                                | П | 3,8-10 | 5,3+07    | 2,1+04    |
|        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | M | 4,0-10 | 5,0+07    | 2,0+04    |
| U-230  | 20,8 сут                                | Б | 3,6-07 | 5,6+04    | 2,2+01    |
| 230    | 20,0 €51                                | П | 1,2-05 | 1,7+03    | 6,7-01    |
|        |                                         | M | 1,5-05 | 1,3+03    | 5,3-01    |
| U-231  | 4,20 сут                                | Б | 8,3-11 | 2,4+08    | 9,6+04    |
| 0 231  | 4,20 cy1                                | П | 3,4-10 | 5,9+07    | 2,4+04    |
|        |                                         | M | 3,7-10 | 5,4+07    | 2,2+04    |
| U-232  | 72,0 лет                                | Б | 4,0-06 | 5,0+03    | 2,0       |
| 0-232  | 72,0 ЛС1                                | П | 7,2-06 | 2,8+03    | 1,1       |
|        |                                         | M | 3,5-05 | 5,7+02    |           |
| U-233  | 1,58+05 лет                             | Б | 5,7-07 | · ·       | 2,3-01    |
| 0-233  | 1,38+03 лет                             |   |        | 3,5+04    | 1,4+01    |
|        |                                         | П | 3,2-06 | 6,3+03    | 2,5       |
| 11.224 | 2.44+05                                 | M | 8,7-06 | 2,3+03    | 9,2-01    |
| U-234  | 2,44+05 лет                             | Б | 5,5-07 | 3,6+04    | 1,5+01    |
|        |                                         | П | 3,1-06 | 6,5+03    | 2,6       |
| 11.005 | 7.04.00                                 | M | 8,5-06 | 2,4+03    | 9,4-01    |
| U-235  | 7,04+08                                 | Б | 5,1-07 | 2,7+04[2] | 1,1+01[3] |
|        |                                         | П | 2,8-06 | 7,1+03    | 2,9       |
|        |                                         | M | 7,7-06 | 2,6+03    | 1,0       |
| U-236  | 2,34+07                                 | Б | 5,2-07 | 3,8+04    | 1,5+01    |
|        |                                         | П | 2,9-06 | 6,9+03    | 2,8       |
|        |                                         | M | 7,9-06 | 2,5+03    | 1,0       |
| U-237  | 6,75 сут                                | Б | 1,9-10 | 1,1+08    | 4,2+04    |
|        |                                         | П | 1,6-09 | 1,3+07    | 5,0+03    |
| U-237  | 6,75 сут                                | Б | 1,9-10 | 1,1+08    | 4,2+04    |
|        |                                         | M | 1,8-09 | 1,1+07    | 4,4+03    |
| U-238  | 4,47+09 лет                             | Б | 4,9-07 | 6,0+03[3] | 2,4[3]    |
|        |                                         | П | 2,6-06 | 6,0+03[3] | 2,4[3]    |
|        |                                         | M | 7,3-06 | 2,7+03    | 1,1       |

| U-239  | 0,392 час                            | Б | 1,1-11 | 1,8+09               | 7,3+05               |
|--------|--------------------------------------|---|--------|----------------------|----------------------|
|        |                                      | П | 2,3-11 | 8,7+08               | 3,5+05               |
|        |                                      | M | 2,4-11 | 8,3+08               | 3,3+05               |
| U-240  | 14,1 час                             | Б | 2,1-10 | 9,5+07               | 3,8+04               |
|        |                                      | П | 5,3-10 | 3,8+07               | 1,5+04               |
|        |                                      | M | 5,7-10 | 3,5+07               | 1,4+04               |
| Np-232 | 0,245 час                            | П | 4,7-11 | 4,3+08               | 1,7+05               |
| Np-233 | 0,603 час                            | П | 1,7-12 | 1,2+10               | 4,7+06               |
| Np-234 | 4,40 сут                             | П | 5,4-10 | 3,7+07               | 1,5+04               |
| Np-235 | 1,08 лет                             | П | 4,0-10 | 5,0+07               | 2,0+04               |
| Np-236 | 1,15+05 лет                          | П | 3,0-06 | 6,7+03               | 2,7                  |
| Np-236 | 22,5 час                             | П | 5,0-09 | 4,0+06               | 1,6+03               |
| Np-237 | 2,14+06                              | П | 2,1-05 | 9,5+02               | 3,8-01               |
| Np-238 | 2,12 сут                             | П | 2,0-09 | 1,0+07               | 4,0+03               |
| Np-239 | 2,36 сут                             | П | 9,0-10 | 2,2+07               | 8,9+03               |
| Np-240 | 1,08 час                             | П | 8,7-11 | 2,3+08               | 9,2+04               |
| Pu-234 | 8,80 час                             | П | 1,9-08 | 1,1+06               | 4,2+02               |
|        |                                      | M | 2,2-08 | 9,1+05               | 3,6+02               |
| Pu-235 | 0,422 час                            | П | 1,5-12 | 1,3+10               | 5,3+06               |
|        |                                      | M | 1,6-12 | 1,2+10               | 5,0+06               |
| Pu-236 | 2,85 лет                             | П | 1,8-05 | 1,1+03               | 4,4-01               |
|        |                                      | M | 9,6-06 | 2,1+03               | 8,3-01               |
| Pu-237 | 45,3 сут                             | П | 3,3-10 | 6,1+07               | 2,4+04               |
|        |                                      | M | 3,6-10 | 5,6+07               | 2,2+04               |
| Pu-238 | 87,7 лет                             | П | 4,3-05 | 8,9+011)             | 3,7-021)             |
|        |                                      | M | 1,5-05 | 1,3+03               | 5,3-01               |
|        |                                      | M | 1,5-05 | 1,3+03               | 5,3-01               |
| Pu-239 | 2,41+04 лет                          | П | 4,7-05 | 7,8+01 <sup>1)</sup> | 3,2-02 <sup>1)</sup> |
|        |                                      | M | 1,5-05 | 1,3+03               | 5,3-01               |
| Pu-240 | 6,54+03 лет                          | П | 4,7-05 | 7,8+011)             | 3,2-021)             |
|        | ,                                    | M | 1,5-05 | 1,3+03               | 5,3-01               |
| Pu-241 | 14,4 лет                             | П | 8,5-07 | 4,1+031)             | 1,71)                |
|        | ,                                    | M | 1,6-07 | 1,3+05               | 5,0+01               |
| Pu-242 | 3,76+05 лет                          | П | 4,4-05 | 7,4+011)             | 3,1-021)             |
| Pu-241 | 14,4 лет                             | П | 8,5-07 | 4,1+031)             | 1,71)                |
|        |                                      | M | 1,4-05 | 1,4+03               | 5,7-01               |
| Pu-243 | 4,95 час                             | П | 8,2-11 | 1,6+081)             | 6,8+041)             |
|        | , -                                  | M | 8,5-11 | 2,0+081)             | 8,5+041)             |
| Pu-244 | 8,26+07 лет                          | П | 4,4-05 | 1,5+021)             | 6,3-021)             |
|        | -,, -, -, -, -, -, -, -, -, -, -, -, | M | 1,3-05 | 1,5+03               | 6,2-01               |
| Pu-245 | 10,5 час                             | П | 4,5-10 | 4,4+07               | 1,8+04               |

|         |             | M | 4,8-10 | 4,2+07 | 1,7+04 |
|---------|-------------|---|--------|--------|--------|
| Pu-246  | 10,9 сут    | П | 7,0-09 | 2,9+06 | 1,1+03 |
|         |             | M | 7,6-09 | 2,6+06 | 1,1+03 |
| Am-237  | 1,22 час    | П | 2,5-11 | 8,0+08 | 3,2+05 |
| Am-238  | 1,63 час    | П | 8,5-11 | 2,4+08 | 9,4+04 |
| Am-239  | 11,9 час    | П | 2,2-10 | 9,1+07 | 3,6+04 |
| Am-240  | 2,12 сут    | П | 4,4-10 | 4,5+07 | 1,8+04 |
| Am-241  | 4,32+02 лет | П | 3,9-05 | 5,1+02 | 2,1-01 |
| Am-242  | 16,0 час    | П | 1,6-08 | 1,3+06 | 5,0+02 |
| Am-242m | 1,52+02 лет | П | 3,5-05 | 5,7+02 | 2,3-01 |
| Am-243  | 7,38+03     | П | 3,9-05 | 5,1+02 | 2,1-01 |
| Am-244  | 10,1 час    | П | 1,9-09 | 1,1+07 | 4,2+03 |
| Am-244m | 0,433 час   | П | 7,9-11 | 2,5+08 | 1,0+05 |
| Am-245  | 2,05 час    | П | 5,3-11 | 3,8+08 | 1,5+05 |
| Am-246  | 0,650 час   | П | 6,8-11 | 2,9+08 | 1,2+05 |
| Am-246m | 0,417 час   | П | 2,3-11 | 8,7+08 | 3,5+05 |
| Cm-238  | 2,40 час    | П | 4,1-09 | 4,9+06 | 2,0+03 |
| Cm-240  | 27,0 сут    | П | 2,9-06 | 6,9+03 | 2,8    |
| Cm-241  | 32,8 сут    | П | 3,4-08 | 5,9+05 | 2,4+02 |
| Cm-242  | 163 сут     | П | 4,8-06 | 4,2+03 | 1,7    |
| Cm-243  | 28,5 лет    | П | 2,9-05 | 6,9+02 | 2,8-01 |
| Cm-244  | 18,1 лет    | П | 2,5-05 | 8,0+02 | 3,2-01 |
| Cm-245  | 8,50+03 лет | П | 4,0-05 | 5,0+02 | 2,0-01 |
| Cm-247  | 1,56+07 лет | П | 3,6-05 | 5,6+02 | 2,2-01 |
| Cm-242  | 163 сут     | П | 4,8-06 | 4,2+03 | 1,7    |
| Cm-248  | 3,39+05 лет | П | 1,4-04 | 1,4+02 | 5,7-02 |

1) Сохранены значения ПГПперс и ДОАперс, приведенные в настоящем нормативе, в связи с достигнутым уровнем безопасности на предприятиях Казахстана. Эти значения ниже, чем значения, полученные с использованием дозовых коэффициентов из данного приложения.

| Cm-249  | 1,07 час    | П | 3,2-11 | 6,3+08 | 2,5+05 |
|---------|-------------|---|--------|--------|--------|
| Cm-250  | 6,90+03 лет | П | 7,9-04 | 2,5+01 | 1,0-02 |
| Bk-245  | 4,94 сут    | П | 2,0-09 | 1,0+07 | 4,0+03 |
| Bk-246  | 1,83 сут    | П | 3,4-10 | 5,9+07 | 2,4+04 |
| Bk-247  | 1,38+03 лет | П | 6,5-05 | 3,1+02 | 1,2-01 |
| Bk-249  | 320 лет     | П | 1,5-07 | 1,3+05 | 5,3+01 |
| Bk-250  | 3,22 час    | П | 9,6-10 | 2,1+07 | 8,3+03 |
| Am-246  | 0,650 час   | П | 6,8-11 | 2,9+08 | 1,2+05 |
| Am-246m | 0,417 час   | П | 2,3-11 | 8,7+08 | 3,5+05 |
| Fm-252  | 22,7 час    | П | 3,0-07 | 6,7+04 | 2,7+01 |
| Fm-253  | 3,00 сут    | П | 3,7-07 | 5,4+04 | 2,2+01 |
| Fm-254  | 3,24 час    | П | 5,6-08 | 3,6+05 | 1,4+02 |
| Fm-255  | 20,1 час    | П | 2,5-07 | 8,0+04 | 3,2+01 |
|         |             |   |        |        |        |

| Fm-257  | 101 сут      | П | 6,6-06 | 3,0+03 | 1,2    |
|---------|--------------|---|--------|--------|--------|
| Cf-244  | 0,323 час    | П | 1,3-08 | 1,5+06 | 6,2+02 |
| Cf-246  | 1,49 сут     | П | 4,2-07 | 4,8+04 | 1,9+01 |
| Cf-248  | 334 сут      | П | 8,2-06 | 2,4+03 | 9,8-01 |
| Cf-249  | 3,50+02 лет  | П | 6,6-05 | 3,0+02 | 1,2-01 |
| Cf-250  | 13,1 лет     | П | 3,2-05 | 6,3+02 | 2,5-01 |
| Cf-251  | 8,98+02 лет  | П | 6,7-05 | 3,0+02 | 1,2-01 |
| Cf-252  | 2,64 лет     | П | 1,8-05 | 1,1+03 | 4,4-01 |
| Cf-253  | 17,8 сут     | П | 1,2-06 | 1,7+04 | 6,7    |
| Cf-254  | 60,5 сут     | П | 3,7-05 | 5,4+02 | 2,2-01 |
| Es-250  | 2,10 час     | П | 5,9-10 | 3,4+07 | 1,4+04 |
| Es-251  | 1,38 сут лет | П | 2,0-09 | 1,0+07 | 4,0+03 |
| Es-253  | 20,5 сут     | П | 2,5-06 | 8,0+03 | 3,2    |
| Es-254  | 276 сут      | П | 8,0-06 | 2,5+03 | 1,0    |
| Es-254m | 1,64 сут     | П | 4,4-07 | 4,5+04 | 1,8+01 |
| Fm-252  | 22,7 час     | П | 3,0-07 | 6,7+04 | 2,7+01 |
| Fm-253  | 3,00 сут     | П | 3,7-07 | 5,4+04 | 2,2+01 |
| Fm-254  | 3,24 час     | П | 5,6-08 | 3,6+05 | 1,4+02 |
| Fm-255  | 20,1 час     | П | 2,5-07 | 8,0+04 | 3,2+01 |
| Fm-257  | 101 сут      | П | 6,6-06 | 3,0+03 | 1,2    |
| Md-257  | 5,20 час     | П | 2,3-08 | 8,7+05 | 3,5+02 |
| Md-258  | 55,0 сут     | П | 5,5-06 | 3,6+03 | 1,5    |

Примечание:

 $^{[1]}$ При поступлении изотопа  $^{40}$ К дополнительно к природной смеси изотопов калия;

[2]Соответствует годовому пределу поступления урана, равного 500 мг в год и величина которого определяется химической токсичностью соединений урана.

Для персонала на случай поступления радионуклидов с вдыхаемым воздухом приведены значения дозового коэффициента, допустимого годового поступления ПГП перс, допустимой среднегодовой объемной активности ДОА перс. В настоящее приложение не входят инертные газы, поскольку они являются источниками внешнего облучения, а также изотопы радона с продуктами их распада. Природные радионуклиды <sup>87</sup>Rb, <sup>115</sup>In, <sup>144</sup>Nd, <sup>147</sup>Sm и <sup>187</sup>Re не включены в таблицу, поскольку они нормируются по их химической токсичности. Из-за химической токсичности урана поступление через органы дыхания его соединений типов Б или П не должно превышать 2,5 мг в сутки и 500 мг в год.

Если химическая форма соединения данного радионуклида неизвестна, то следует использовать данные из настоящего приложения для соединения с

наибольшим значением величины дозового коэффициента и, соответственно, наименьшими значениями  $\Pi\Gamma\Pi_{\text{nepc}}$  и  $\mathcal{L}OA_{\text{nep.}}$ 

Приложение 22 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Поступление радионуклидов через органы дыхания и среднегодовая объемная активность их во вдыхаемом воздухе

В зависимости от скорости перехода радионуклида из легких в кровь, поступающие через органы дыхания в виде радиоактивных аэрозолей радионуклиды и их химические соединения разделены на типы:

- 1) тип "М" (медленно растворимые соединения): при растворении в легких веществ, отнесенных к этому типу, наблюдается компонента активности радионуклида, поступающая в кровь со скоростью 0,0001 сут<sup>-1</sup>;
- 2) тип "П" (соединения, растворимые с промежуточной скоростью): при растворении в легких веществ, отнесенных к этому типу, основная активность радионуклида поступает в кровь со скоростью 0,005 сут<sup>-1</sup>;
- 3) тип "Б" (быстро растворимые соединения): при растворении в легких веществ, отнесенных к этому типу, основная активность радионуклида поступает в кровь со скоростью 100 сут<sup>-1</sup>.

Поступающие радионуклиды в форме радиоактивных газов выделены в виде типа "Г" (Г1-Г3 - газы и пары соединений некоторых элементов).

Распределение соединений элементов по типам при ингаляции

| Элемент  | Символ | Тип | Химические соединения                     |
|----------|--------|-----|-------------------------------------------|
| 1        | 2      | 3   | 4                                         |
| Тритий   | Т      | Γ1  | Пары тритированной<br>воды                |
|          |        | Γ2  | Газообразный тритий                       |
|          |        | Г3  | Тритированный металл                      |
| Бериллий | Be     | M   | Оксиды, галогениды,<br>нитраты            |
|          |        | П   | Иные соединения                           |
| Углерод  | C      | Γ1  | Элементарный углерод                      |
|          |        | Γ2  | Диоксид углерода (CO <sub>2</sub> )       |
|          |        | Γ3  | Оксид углерода (СО)                       |
| Фтор     | F      | M   | Соединения с лантаноидами                 |
|          |        | Б   | Соединения с H, Li, Na, K<br>, Rb, Cs, Fr |
|          |        | П   | Иные соединения                           |
|          |        |     |                                           |

| Натрий   | Na | Б  | Все соединения                                                                                                                       |
|----------|----|----|--------------------------------------------------------------------------------------------------------------------------------------|
| Магний   | Mg | П  | Оксиды, гидроксиды, карбиды, галогениды, нитраты                                                                                     |
|          |    | Б  | Иные соединения                                                                                                                      |
| Алюминий | Al | П  | Оксиды, гидроксиды, карбиды, галогениды, нитраты, металл                                                                             |
|          |    | Б  | Иные соединения                                                                                                                      |
| Кремний  | Si | M  | Алюмосиликаты (стекло)                                                                                                               |
|          |    | П  | Оксиды, гидроксиды, карбиды, нитраты                                                                                                 |
|          |    | Б  | Иные соединения                                                                                                                      |
| Фосфор   | P  | П  | Фосфаты $Zn^{2+}$ , $Sn^{2+}$ , $Mg^2$ $^+$ , $Fe^{3+}$ , $Bi^{3+}$ и лантаноидов                                                    |
|          |    | Б  | Иные соединения                                                                                                                      |
| Сера     | S  | П  | Сера в элементарной форме сульфиды Sr, Ba, Ge, Sn, Pb, As, Sb, Bi, Ag, Cu, Au, Zn, Cd, Hg, Mo, W сульфаты Ca, Sr, Ba, Ra, As, Sb, Bi |
|          |    | Б  | Иные соединения                                                                                                                      |
|          |    | Γ1 | Сульфид углерода ( $\mathrm{CS}_2$ )                                                                                                 |
|          |    | Γ2 | Диоксид серы ( $SO_2$ )                                                                                                              |
| Хлор     | Cl | Б  | Соединения с H, Li, Na, K<br>, Rb, Cs, Fr                                                                                            |
|          |    | П  | Иные соединения                                                                                                                      |
| Калий    | K  | Б  | Все соединения                                                                                                                       |
| Кальций  | Ca | П  | Все соединения                                                                                                                       |
| Скандий  | Sc | M  | Все соединения                                                                                                                       |
| Титан    | Ti | M  | SrTiO <sub>3</sub>                                                                                                                   |
|          |    | П  | Оксиды, гидроксиды, карбиды, галогениды, нитраты                                                                                     |
|          |    | Б  | Иные соединения                                                                                                                      |
| Ванадий  | V  | П  | Оксиды, гидроксиды, карбиды, галогениды                                                                                              |
|          |    | Б  | Иные соединения                                                                                                                      |
| Хром     | Cr | M  | Оксиды, гидроксиды                                                                                                                   |
|          |    | П  | Галогениды, нитраты                                                                                                                  |
|          |    | Б  | Иные соединения                                                                                                                      |

| Марганец | Mn | П | Оксиды, гидроксиды, галогениды, нитраты          |
|----------|----|---|--------------------------------------------------|
|          |    | Б | Иные соединения                                  |
| Железо   | Fe | П | Оксиды, гидроксиды, галогениды                   |
|          |    | Б | Иные соединения                                  |
| Кобальт  | Со | M | Оксиды, гидроксиды, галогениды, нитраты          |
|          |    | П | Иные соединения                                  |
| Никель   | Ni | П | Оксиды, гидроксиды, карбиды                      |
|          |    | Б | Иные соединения                                  |
|          |    | Γ | Газообразный Ni(CO) <sub>4</sub>                 |
| Медь     | Cu | M | Оксиды, гидроксиды                               |
|          |    | П | Сульфиды, галогениды,<br>нитраты                 |
|          |    | Б | Иные неорганические соединения                   |
| Цинк     | Zn | M | Все соединения                                   |
| Галлий   | Ga | П | Оксиды, гидроксиды, карбиды, галогениды, нитраты |
|          |    | Б | Иные соединения                                  |
| Германий | Ge | П | Оксиды, сульфиды, галогениды                     |
|          |    | Б | Иные соединения                                  |
| Мышьяк   | As | П | Все соединения                                   |
| Селен    | Se | П | Селен в элементарной форме                       |
|          |    | Б | Иные неорганические соединения                   |
| Бром     | Br | Б | Соединения с H, Li, Na, K<br>, Rb, Cs, Fr        |
|          |    | П | Иные соединения                                  |
| Рубидий  | Rb | Б | Все соединения                                   |
| Стронций | Sr | M | SrTiO <sub>3</sub>                               |
|          |    | Б | Иные соединения                                  |
| Иттрий   | Y  | M | Оксиды, гидроксиды                               |
|          |    | П | Иные соединения                                  |
| Цирконий | Zr | M | Карбид                                           |
|          |    | П | Оксиды, гидроксиды, галогениды, нитраты          |
|          |    | Б | Иные соединения                                  |
| Ниобий   | Nb | M | Оксиды, гидроксиды                               |

|          |    | П  | Иные соединения                                             |
|----------|----|----|-------------------------------------------------------------|
| Молибден | Mo | M  | Оксиды, гидроксиды,<br>МоЅ <sub>2</sub>                     |
|          |    | Б  | Иные соединения                                             |
| Гехнеций | Тс | П  | Оксиды, гидроксиды, галогениды, нитраты                     |
|          |    | Б  | Иные соединения                                             |
| Рутений  | Ru | M  | Оксиды, гидроксиды,<br>металл                               |
|          |    | П  | Галогениды                                                  |
|          |    | Γ  | Тетраоксид рутения RuO 4                                    |
| Родий    | Rh | M  | Оксиды, гидроксиды                                          |
|          |    | П  | Галогениды                                                  |
|          |    | Б  | Иные соединения                                             |
| Талладий | Pd | M  | Оксиды, гидроксиды                                          |
|          |    | П  | Галогениды, нитраты                                         |
|          |    | Б  | Иные соединения                                             |
| Серебро  | Ag | M  | Оксиды, гидроксиды                                          |
|          | -  | П  | Нитраты, сульфиды                                           |
|          |    | Б  | Иные соединения                                             |
|          | Cd | M  | Оксиды, гидроксиды                                          |
|          |    | П  | Сульфиды, галогениды, нитраты                               |
|          |    | Б  | Иные соединения                                             |
| Индий    | In | П  | Оксиды, гидроксиды, галогениды, нитраты                     |
|          |    | Б  | Иные соединения                                             |
| Олово    | Sn | П  | Оксиды, гидроксиды, сульфиды, галогениды, нитраты, фосфат   |
|          |    | Б  | Иные соединения                                             |
| Сурьма   | Sb | П  | Оксиды, гидроксиды, галогениды, сульфиды, сульфаты, нитраты |
|          |    | Б  | Иные соединения                                             |
| Геллур   | Те | П  | Оксиды, гидроксиды,<br>нитраты                              |
|          |    | Б  | Иные соединения                                             |
|          |    | Γ  | Пары теллура                                                |
| Иод      | I  | Б  | Все соединения                                              |
|          |    | Γ1 | Элементарный иод                                            |
|          |    | Γ2 | Метилиод СН <sub>3</sub> I                                  |
| Цезий    | Cs | Б  | Все соединения                                              |

| Барий     | Ba | Б | Все соединения                                                        |
|-----------|----|---|-----------------------------------------------------------------------|
| Лантан    | La | П | Оксиды, гидроксиды                                                    |
|           |    | Б | Иные соединения                                                       |
| Церий     | Ce | M | Оксиды, гидроксиды,<br>фториды                                        |
|           |    | П | Иные соединения                                                       |
| Празеодим | Pr | M | Оксиды, гидроксиды,<br>карбиды, ториды                                |
|           |    | П | Иные соединения                                                       |
| Неодим    | Nd | М | Оксиды, гидроксиды,<br>карбиды, фториды                               |
|           |    | П | Иные соединения                                                       |
| Прометий  | Pm | M | Оксиды, гидроксиды,<br>карбиды, фториды                               |
|           |    | П | Иные соединения                                                       |
| Самарий   | Sm | П | Все соединения                                                        |
| Европий   | Eu | П | Все соединения                                                        |
| Гадолиний | Gd | П | Труднорастворимые соединения, оксиды, гидроксиды, фториды             |
|           |    | Б | Иные соединения                                                       |
| Тербий    | Tb | П | Все соединения                                                        |
| Диспозий  | Dy | П | Все соединения                                                        |
| Гольмий   | Но | П | Все соединения                                                        |
| Эрбий     | Er | П | Все соединения                                                        |
| Тулий     | Tm | П | Все соединения                                                        |
| Иттербий  | Yb | M | Оксиды, гидроксиды,<br>фториды                                        |
|           |    | П | Иные соединения                                                       |
| Лютеций   | Lu | M | Оксиды, гидроксиды,<br>фториды                                        |
|           |    | П | Иные соединения                                                       |
| Гафний    | Hf | П | Оксиды, гидроксиды, карбиды, галогениды, нитраты                      |
|           |    | Б | Иные соединения                                                       |
| Тантал    | Та | М | Элементарный тантал, оксиды, гидроксиды, галогениды, карбиды, нитриды |
|           |    | П | Иные соединения                                                       |
| Вольфрам  | W  | Б | Все соединения                                                        |
| Рений     | Re | П | Оксиды, гидроксиды, галогениды, нитраты                               |
|           |    | Б | Иные соединения                                                       |

| Осмий       | Os | M      | Оксиды, гидроксиды                                   |
|-------------|----|--------|------------------------------------------------------|
|             |    | П      | Галогениды, нитраты                                  |
|             |    | Б      | Иные соединения                                      |
| Ирридий     | Ir | M      | Оксиды, гидроксиды                                   |
|             |    | П      | Галогениды, нитраты, элементарный ирридий            |
|             |    | Б      | Иные соединения                                      |
| Платина     | Pt | Б      | Все соединения                                       |
| Золото      | Au | M      | Оксиды, гидроксиды                                   |
|             |    | П      | Галогениды, нитраты                                  |
|             |    | Б      | Иные соединения                                      |
| Ртуть       | Hg | П (но) | Оксиды, гидроксиды, галогениды, нитраты, сульфиды    |
|             |    | Б (но) | Сульфаты                                             |
|             |    | Б (ор) | Все органические соединения                          |
|             |    | Γ      | Пары ртути                                           |
| Таллий      | Tl | Б      | Все соединения                                       |
| Свинец      | Pb | Б      | Все соединения                                       |
| Висмут      | Bi | Б      | Нитраты                                              |
|             |    | П      | Иные соединения                                      |
| Полоний     | Po | П      | Оксиды, гидроксиды,<br>нитраты                       |
|             |    | Б      | Иные соединения                                      |
| Астат       | At | Б      | Соединения с H, Li, Na, K<br>, Rb, Cs, Fr            |
|             |    | П      | Иные соединения                                      |
| Франций     | Fr | Б      | Все соединения                                       |
| Радий       | Ra | П      | Все соединения                                       |
| Актиний     | Ac | M      | Оксиды, гидроксиды                                   |
|             |    | П      | Галогениды, нитраты                                  |
|             |    | Б      | Иные соединения                                      |
| Торий       | Th | M      | Оксиды, гидроксиды                                   |
|             |    | П      | Иные соединения                                      |
| Протактиний | Pa | M      | Оксиды, гидроксиды                                   |
|             |    | П      | Иные соединения                                      |
| Уран        | U  | Б      | $UF_6$ , $UO_2F_2$ , $UO_2(NO_3)_2$                  |
|             |    | П      | UO <sub>3</sub> , UF <sub>4</sub> , UCl <sub>4</sub> |
|             |    | M      | $UO_2, U_3O_8$                                       |
| Нептуний    | Np | П      | Все соединения                                       |
| Плутоний    | Pu | M      | Оксиды, гидроксиды                                   |

|            |    | П | Иные соединения кроме<br>хелатов |  |
|------------|----|---|----------------------------------|--|
| Америций   | Am | П | Все соединения                   |  |
| Кюрий      | Cm | П | Все соединения                   |  |
| Берклий    | Bk | П | Все соединения                   |  |
| Калифорний | Cf | M | Оксиды, гидроксиды               |  |
|            |    | П | Иные соединения                  |  |
| Эйнштейний | Es | П | Все соединения                   |  |
| Фермий     | Fm | П | Все соединения                   |  |

Приложение 23 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Значения дозовых коэффициентов, пределов годового поступления с воздухом и пищей и допустимой объемной активности во вдыхаемом воздухе отдельных радионуклидов для критических групп населения<sup>[1]</sup>

|         |               | Поступление с воздухом |    |                             |                                      |                                                     | Поступление с пищей    |    |                                                                                            |                       |
|---------|---------------|------------------------|----|-----------------------------|--------------------------------------|-----------------------------------------------------|------------------------|----|--------------------------------------------------------------------------------------------|-----------------------|
| Радиону | Период        |                        |    | Дозовый<br>коэффиц<br>иент, |                                      | Допусти м а я среднег одовая объемна я активно сть, | Критическая группа [2] |    | Дозовый<br>коэффиц<br>иент,                                                                |                       |
| PH      | T1/2          | КГ                     |    | <i>Е</i> <sub>нак</sub>     | <i>ПГП</i> <sup>603</sup> , Бк в год | ДОА <sub>нас,</sub><br>Бк/м3                        | КГ                     |    | $\varepsilon_{_{_{_{\!\scriptscriptstyle{Hac}}}}}^{_{_{nun_{\!\scriptscriptstyle{Hac}}}}}$ | ПГП нак<br>, Бк в год |
| 1       | 2             | 3                      |    | , 3B/DK                     | 5 SK B 104                           | 6                                                   | 7                      |    | 8                                                                                          | 9                     |
| H-3     | 12,3 лет      |                        | #2 | 2,7-10                      | 3,7+6                                | 1,9+3                                               | [3]                    | #2 | 4,8-11                                                                                     | 2,1+7                 |
|         |               |                        |    |                             |                                      |                                                     | [4]                    | #2 | 1,2-10                                                                                     | 8,3+6                 |
| Be-7    | 53,3 сут      |                        | #4 | 9,6-11                      | 1,0+7                                | 2,0+3                                               |                        | #2 | 1,3-10                                                                                     | 7,7+6                 |
| Be-10   | 1,60+6<br>лет |                        | #6 | 3,5-8                       | 2,9+4                                | 3,5                                                 |                        | #2 | 8,0-9                                                                                      | 1,3+5                 |
| C-14    | 5,73+3<br>лет |                        | #5 | 2,5-9                       | 4,0+5                                | 5,5+1                                               |                        | #2 | 1,6-9                                                                                      | 6,3+5                 |
| Na-22   | 2,60 лет      |                        | #2 | 7,3-9                       | 1,4+5                                | 7,2+1                                               |                        | #2 | 1,5-8                                                                                      | 6,7+4                 |
| Na-24   | 15.0 час      |                        | #2 | 1,8-9                       | 5,6+5                                | 2,9+2                                               |                        | #2 | 2,1-8                                                                                      | 4,8+4                 |
| Al-26   | 7,16+5<br>лет |                        | #6 | 2,0-8                       | 5,0+4                                | 6,2                                                 |                        | #2 | 2,1-8                                                                                      | 4,8+4                 |
| Si-32   | 4,50+2<br>лет |                        | #6 | 1,1-7                       | 9,1+3                                | 1,1                                                 |                        | #2 | 4,1-9                                                                                      | 2,4+5                 |
| P-32    | 14,3 сут      |                        | #5 | 4,0-9                       | 2,5+5                                | 3,4+1                                               |                        | #2 | 1,9-8                                                                                      | 5,3+4                 |
| P-33    | 25,4 сут      |                        | #5 | 1,9-9                       | 5,3+5                                | 7,2+1                                               |                        | #2 | 1,8-9                                                                                      | 5,6+5                 |
| S-35    | 87,4 сут      |                        | #5 | 1,8-9                       | 5,6+5                                | 7,6+1                                               | [5]                    | #2 | 8,7-10                                                                                     | 1,1+6                 |

|                     |               |    |        |       |       | [6] | #2 | 5,4-9  | 1,9+5 |
|---------------------|---------------|----|--------|-------|-------|-----|----|--------|-------|
| Cl-36               | 3,01+5 лет    | #5 | 8,8-9  | 1,1+5 | 1,6+1 |     | #2 | 6,3-9  | 1,6+5 |
| K-40 <sup>[7]</sup> | 1,28+9<br>лет | #2 | 1,7-8  | 5,9+4 | 3,1+1 |     | #2 | 4,2-8  | 2,4+4 |
| Ca-41               | 1,40+5<br>лет | #5 | 3,3-10 | 3,0+6 | 4,2+2 |     | #5 | 5,0-10 | 2,0+6 |
| Ca-45               | 163 сут       | #5 | 4,6-9  | 2,2+5 | 3,0+1 |     | #2 | 4,9-9  | 2,0+5 |
| Ca-47               | 4,53 сут      | #5 | 2,6-9  | 3,8+5 | 5,3+1 |     | #2 | 9,3-9  | 1,1+5 |
| Sc-44m              | 2,44 сут      | #2 | 8,4-9  | 1,2+5 | 6,3+1 |     | #2 | 1,6-8  | 6,3+4 |
| Sc-46               | 83,8 сут      | #5 | 8,4-9  | 1,2+5 | 1,6+1 |     | #2 | 7,9-9  | 1,3+5 |
| Sc-47               | 3,35 сут      | #5 | 9,2-10 | 1,1+6 | 1,5+2 |     | #2 | 3,9-9  | 2,6+5 |
| Sc-48               | 1,82 сут      | #2 | 5,9-9  | 1,7+5 | 8,9+1 |     | #2 | 9,3-9  | 1,1+5 |
| Ti-44               | 47,3 лет      | #6 | 1,2-7  | 8,3+3 | 1,0   |     | #2 | 3,1-8  | 3,2+4 |
| V-48                | 16,2 сут      | #4 | 4,3-9  | 2,3+5 | 4,5+1 |     | #2 | 1,1-8  | 9,1+4 |
| V-49                | 330 сут       | #2 | 2,1-10 | 4,8+6 | 2,5+3 |     | #2 | 1,4-10 | 7,1+6 |
| Cr-51               | 27,7 сут      | #2 | 2,1-10 | 4,8+6 | 2,5+3 |     | #2 | 2,3-10 | 4,3+6 |
| Mn-52               | 5,59 сут      | #2 | 6,8-9  | 1,5+5 | 7,7+1 |     | #2 | 8,8-9  | 1,1+5 |
| Mn-53               | 3,70+6<br>лет | #2 | 3,4-10 | 2,9+6 | 1,5+3 |     | #2 | 2,2-10 | 4,5+6 |
| Mn-54               | 312 сут       | #5 | 1,9-9  | 5,3+5 | 7,2+1 |     | #2 | 3,1-9  | 3,2+5 |
| Mn-56               | 2,58 час      | #2 | 7,8-10 | 1,3+6 | 6,8+2 |     | #2 | 1,7-9  | 5,9+5 |
| Fe-55               | 2,70 лет      | #4 | 6,2-10 | 1,6+6 | 3,1+2 |     | #2 | 2,4-9  | 4,2+5 |
| Fe-59               | 44,5 сут      | #5 | 4,6-9  | 2,2+5 | 3,0+1 |     | #2 | 1,3-8  | 7,7+4 |
| Fe-60               | 1,00+5<br>лет | #6 | 1,4-7  | 7,1+3 | 8,8-1 |     | #5 | 2,3-7  | 4,3+3 |
| Co-56               | 78,7 сут      | #5 | 5,8-9  | 1,7+5 | 2,4+1 |     | #2 | 1,5-8  | 6,7+4 |
| Co-57               | 271 сут       | #5 | 6,7-10 | 1,5+6 | 2,0+2 |     | #2 | 1,6-9  | 6,3+5 |
| Co-58               | 70,8 сут      | #5 | 2,0-9  | 5,0+5 | 6,8+1 |     | #2 | 4,4-9  | 2,3+5 |
| Co-60               | 5,27 лет      | #5 | 1,2-8  | 8,3+4 | 1,1+1 |     | #2 | 2,7-8  | 3,7+4 |
| Ni-56               | 6,10 сут      | #5 | 1,1-9  | 9,1+5 | 1,2+2 |     | #2 | 4,0-9  | 2,5+5 |
| Ni-57               | 1,50 сут      | #2 | 2,8-9  | 3,6+5 | 1,9+2 |     | #2 | 4,9-9  | 2,0+5 |
| Ni-59               | 7,50+4<br>лет | #2 | 6,2-10 | 1,6+6 | 8,5+2 |     | #2 | 3,4-10 | 2,9+6 |
| Ni-63               | 96,0 лет      | #6 | 4,8-10 | 2,1+6 | 2,6+2 |     | #2 | 8,4-10 | 1,2+6 |
| Ni-66               | 2,27 сут      | #2 | 9,4-9  | 1,1+5 | 5,6+1 |     | #2 | 2,2-8  | 4,5+4 |
| Cu-67               | 2,58 сут      | #5 | 7,7-10 | 1,3+6 | 1,8+2 |     | #2 | 2,4-9  | 4,2+5 |
| Zn-65               | 244 сут       | #5 | 1,9-9  | 5,3+5 | 7,2+1 |     | #2 | 1,6-8  | 6,3+4 |
| Zn-72               | 1,94 сут      | #2 | 6,5-9  | 1,5+5 | 8,1+1 |     | #2 | 8,6-9  | 1,2+5 |
| Ga-67               | 3,26 сут      | #5 | 3,0-10 | 3,3+6 | 4,6+2 |     | #2 | 1,2-9  | 8,3+5 |
| Ge-68               | 288 сут       | #5 | 1,6-8  | 6,3+4 | 8,6   |     | #2 | 8,0-9  | 1,3+5 |
| Ge-69               | 1,63 сут      | #2 | 1,4-9  | 7,1+5 | 3,8+2 |     | #2 | 1,3-9  | 7,7+5 |
| Ge-71               | 11,8 сут      | #2 | 8,6-11 | 1,2+7 | 6,1+3 |     | #2 | 7,8-11 | 1,3+7 |

| As-71  | 2,70 сут      | #5 | 5,0-10 | 2,0+6 | 2,7+2 | #2 | 2,8-9  | 3,6+5 |
|--------|---------------|----|--------|-------|-------|----|--------|-------|
| As-72  | 1,08 сут      | #2 | 5,7-9  | 1,8+5 | 9,2+1 | #2 | 1,2-8  | 8,3+4 |
| As-73  | 80,3 сут      | #5 | 1,2-9  | 8,3+5 | 1,1+2 | #2 | 1,9-9  | 5,3+5 |
| As-74  | 17,8 сут      | #5 | 2,6-9  | 3,8+5 | 5,3+1 | #2 | 8,2-9  | 1,2+5 |
| As-76  | 1,10 сут      | #2 | 4,6-9  | 2,2+5 | 1,1+2 | #2 | 1,1-8  | 9,1+4 |
| As-77  | 1,62 сут      | #5 | 5,0-10 | 2,0+6 | 2,7+2 | #2 | 2,9-9  | 3,4+5 |
| Se-75  | 120 сут       | #4 | 2,5-9  | 4,0+5 | 7,7+1 | #2 | 1,3-8  | 7,7+4 |
| Se-79  | 6,50+4<br>лет | #4 | 5,6-9  | 1,8+5 | 3,4+1 | #2 | 2,8-8  | 3,6+4 |
| Br-77  | 2,33 сут      | #2 | 5,1-10 | 2,0+6 | 1,0+3 | #2 | 4,4-10 | 2,3+6 |
| Br-82  | 1,47 сут      | #5 | 7,9-10 | 1,3+6 | 1,7+2 | #2 | 2,6-9  | 3,8+5 |
| Rb-83  | 86,2 сут      | #2 | 3,8-9  | 2,6+5 | 1,4+2 | #2 | 8,4-9  | 1,2+5 |
| Rb-84  | 32,8 сут      | #2 | 6,4-9  | 1,6+5 | 8,2+1 | #2 | 1,4-8  | 7,1+4 |
| Rb-86  | 18,7 сут      | #2 | 7,7-9  | 1,3+5 | 6,8+1 | #2 | 2,0-8  | 5,0+4 |
| Sr-82  | 25,0 сут      | #2 | 4,0-8  | 2,5+4 | 1,3+1 | #2 | 4,1-8  | 2,4+4 |
| Sr-83  | 1,35 сут      | #2 | 1,9-9  | 5,3+5 | 2,8+2 | #2 | 2,7-9  | 3,7+5 |
| Sr-85  | 64,8 сут      | #5 | 8,8-10 | 1,1+6 | 1,6+2 | #2 | 3,1-9  | 3,2+5 |
| Sr-89  | 50,5 сут      | #5 | 7,3-9  | 1,4+5 | 1,9+1 | #2 | 1,8-8  | 5,6+4 |
| Sr-90  | 29,1 лет      | #5 | 5,0-8  | 2,0+4 | 2,7   | #5 | 8,0-8  | 1,3+4 |
| Y-87   | 3,35 сут      | #2 | 2,2-9  | 4,5+5 | 2,4+2 | #2 | 3,2-9  | 3,1+5 |
| Y-88   | 107 сут       | #5 | 5,4-9  | 1,9+5 | 2,5+1 | #2 | 6,0-9  | 1,7+5 |
| Y-90   | 2,67 сут      | #2 | 8,8-9  | 1,1+5 | 6,0+1 | #2 | 2,0-8  | 5,0+4 |
| Y-91   | 58,5 сут      | #5 | 1,0-8  | 1,0+5 | 1,4+1 | #2 | 1,8-8  | 5,6+4 |
| Zr-88  | 83,4 сут      | #5 | 3,0-9  | 3,3+5 | 4,6+1 | #2 | 2,0-9  | 5,0+5 |
| Zr-89  | 3,27 сут      | #2 | 2,8-9  | 3,6+5 | 1,9+2 | #2 | 4,5-9  | 2,2+5 |
| Zr-93  | 1,53+6<br>лет | #6 | 1,0-8  | 1,0+5 | 1,2+1 | #6 | 1,1-9  | 9,1+5 |
| Zr-95  | 64,0 сут      | #5 | 5,9-9  | 1,7+5 | 2,3+1 | #2 | 5,6-9  | 1,8+5 |
| Nb-93m | 13,6 лет      | #2 | 2,4-9  | 4,2+5 | 2,2+2 | #2 | 9,1-10 | 1,1+6 |
| Nb-94  | 2,03+4 лет    | #5 | 1,3-8  | 7,7+4 | 1,1+1 | #2 | 9,7-9  | 1,0+5 |
| Nb-95  | 35,1 сут      | #5 | 1,9-9  | 5,3+5 | 7,2+1 | #2 | 3,2-9  | 3,1+5 |
| Nb-95m | 3,61 сут      | #5 | 1,0-9  | 1,0+6 | 1,4+2 | #2 | 4,1-9  | 2,4+5 |
| Mo-93  | 3,50+3<br>лет | #5 | 6,6-10 | 1,5+6 | 2,1+2 | #2 | 6,9-9  | 1,4+5 |
| Mo-99  | 2,75 сут      | #2 | 4,4-9  | 2,3+5 | 1,2+2 | #2 | 3,5-9  | 2,9+5 |
| Tc-95m | 61,0 сут      | #5 | 1,1-9  | 9,1+5 | 1,2+2 | #2 | 2,8-9  | 3,6+5 |
| Тс-96  | 4,28 сут      | #2 | 3,9-9  | 2,6+5 | 1,3+2 | #2 | 5,1-9  | 2,0+5 |
| Тс-97  | 2,60+6 лет    | #5 | 2,8-10 | 3,6+6 | 4,9+2 | #2 | 4,9-10 | 2,0+6 |
| Tc-97m | 87,0 сут      | #5 | 4,1-9  | 2,4+5 | 3,3+1 | #2 | 4,1-9  | 2,4+5 |
| Тс-98  | 4,20+6<br>лет | #5 | 1,0-8  | 1,0+5 | 1,4+1 | #2 | 1,2-8  | 8,3+4 |

| Тс-99         | 2,13+5<br>лет | #5 | 5,0-9  | 2,0+5 | 2,7+1 | #2 | 4,8-9  | 2,1+5 |
|---------------|---------------|----|--------|-------|-------|----|--------|-------|
| Ru-97         | 2,90 сут      | #2 | 6,1-10 | 1,6+6 | 8,6+2 | #2 | 8,5-10 | 1,2+6 |
| Ru-103        | 39,3 сут      | #5 | 3,0-9  | 3,3+5 | 4,6+1 | #2 | 4,6-9  | 2,2+5 |
| Ru-106        | 1,01 лет      | #6 | 2,8-8  | 3,6+4 | 4,4   | #2 | 4,9-8  | 2,0+4 |
| Rh-99         | 16,0 сут      | #5 | 1,1-9  | 9,1+5 | 1,2+2 | #2 | 2,9-9  | 3,4+5 |
| Rh-101        | 3,20 лет      | #5 | 6,2-9  | 1,6+5 | 2,2+1 | #2 | 2,8-9  | 3,6+5 |
| Rh-101m       | 4,34 сут      | #5 | 2,7-10 | 3,7+6 | 5,1+2 | #2 | 1,2-9  | 8,3+5 |
| Rh-102        | 2,90 лет      | #5 | 2,0-8  | 5,0+4 | 6,8   | #2 | 1,0-8  | 1,0+5 |
| Rh-102m       | 207 сут       | #5 | 8,2-9  | 1,2+5 | 1,7+1 | #2 | 7,4-9  | 1,4+5 |
| Rh-105        | 1,47 сут      | #5 | 4,5-10 | 2,2+6 | 3,0+2 | #2 | 2,7-9  | 3,7+5 |
| Pd-100        | 3,63 сут      | #4 | 1,5-9  | 6,7+5 | 1,3+2 | #2 | 5,2-9  | 1,9+5 |
| Pd-103        | 17,0 сут      | #5 | 5,3-10 | 1,9+6 | 2,6+2 | #2 | 1,4-9  | 7,1+5 |
| Pd-107        | 6,50+6<br>лет | #6 | 5,9-10 | 1,7+6 | 2,1+2 | #2 | 2,8-10 | 3,6+6 |
| Ag-105        | 41,0 сут      | #4 | 1,3-9  | 7,7+5 | 1,5+2 | #2 | 2,5-9  | 4,0+5 |
| A g -<br>106m | 8,41 сут      | #2 | 5,8-9  | 1,7+5 | 9,1+1 | #2 | 6,9-9  | 1,4+5 |
| A g -<br>108m | 1,27+2<br>лет | #5 | 8,6-9  | 1,2+5 | 1,6+1 | #2 | 1,1-8  | 9,1+4 |
| A g -<br>110m | 250 сут       | #5 | 9,2-9  | 1,1+5 | 1,5+1 | #2 | 1,4-8  | 7,1+4 |
| Ag-111        | 7,45 сут      | #5 | 1,9-9  | 5,3+5 | 7,2+1 | #2 | 9,3-9  | 1,1+5 |
| Cd-109        | 1,27 лет      | #4 | 1,4-8  | 7,1+4 | 1,4+1 | #2 | 9,5-9  | 1,1+5 |
| Cd-113m       | 13,6 лет      | #6 | 1,1-7  | 9,1+3 | 1,1   | #2 | 5,6-8  | 1,8+4 |
| Cd-115        | 2,23 сут      | #2 | 5,1-9  | 2,0+5 | 1,0+2 | #2 | 9,7-9  | 1,0+5 |
| Cd-115m       | 44,6 сут      | #5 | 8,9-9  | 1,1+5 | 1,5+1 | #2 | 1,9-8  | 5,3+4 |
| In-111        | 2,83 сут      | #2 | 1,2-9  | 8,3+5 | 4,4+2 | #2 | 1,7-9  | 5,9+5 |
| In-114m       | 49,5 сут      | #2 | 7,7-8  | 1,3+4 | 6,8   | #2 | 3,1-8  | 3,2+4 |
| Sn-113        | 115 сут       | #5 | 3,2-9  | 3,1+5 | 4,3+1 | #2 | 5,0-9  | 2,0+5 |
| Sn-117m       | 13,6 сут      | #5 | 3,1-9  | 3,2+5 | 4,4+1 | #2 | 5,0-9  | 2,0+5 |
| Sn-119m       | 293 сут       | #5 | 2,6-9  | 3,8+5 | 5,3+1 | #2 | 2,5-9  | 4,0+5 |
| Sn-121        | 1,13 сут      | #5 | 2,9-10 | 3,4+6 | 4,7+2 | #2 | 1,7-9  | 5,9+5 |
| Sn-121m       | 55,0 лет      | #5 | 5,5-9  | 1,8+5 | 2,5+1 | #2 | 2,7-9  | 3,7+5 |
| Sn-123        | 129 сут       | #5 | 9,5-9  | 1,1+5 | 1,4+1 | #2 | 1,6-8  | 6,3+4 |
| Sn-125        | 9,64 сут      | #2 | 1,5-8  | 6,7+4 | 3,5+1 | #2 | 2,2-8  | 4,5+4 |
| Sn-126        | 1,00+5<br>лет | #5 | 3,3-8  | 3,0+4 | 4,2   | #2 | 3,0-8  | 3,3+4 |
| Sb-119        | 1,59 сут      | #2 | 2,8-10 | 3,6+6 | 1,9+3 | #2 | 5,8-10 | 1,7+6 |
| Sb-120        | 5,76 сут      | #2 | 5,0-9  | 2,0+5 | 1,1+2 | #2 | 6,0-9  | 1,7+5 |
| Sb-122        | 2,70 сут      | #2 | 5,7-9  | 1,8+5 | 9,2+1 | #2 | 1,2-8  | 8,3+4 |
| Sb-124        | 60,2 сут      | #5 | 7,7-9  | 1,3+5 | 1,8+1 | #2 | 1,6-8  | 6,3+4 |
| Sb-125        | 2,77 лет      | #5 | 5,8-9  | 1,7+5 | 2,4+1 | #2 | 6,1-9  | 1,6+5 |

| Sb-126  | 12,4 сут      | #4 | 5,1-9  | 2,0+5 | 3,8+1 | #2 | 1,4-8  | 7,1+4 |
|---------|---------------|----|--------|-------|-------|----|--------|-------|
| Sb-127  | 3,85 сут      | #5 | 2,1-9  | 4,8+5 | 6,5+1 | #2 | 1,2-8  | 8,3+4 |
| Te-121  | 17,0 сут      | #2 | 1,9-9  | 5,3+5 | 2,8+2 | #2 | 2,0-9  | 5,0+5 |
| Te-121m |               | #5 | 5,1-9  | 2,0+5 | 2,7+1 | #2 | 1,2-8  | 8,3+4 |
| Te-123m | •             | #5 | 5,0-9  | 2,0+5 | 2,7+1 | #2 | 8,8-9  | 1,1+5 |
| Te-125m | •             | #5 | 4,3-9  | 2,3+5 | 3,2+1 | #2 | 6,3-9  | 1,6+5 |
| Te-127m | 109 сут       | #5 | 9,2-9  | 1,1+5 | 1,5+1 | #2 | 1,8-8  | 5,6+4 |
| Te-129m | 33,6 сут      | #5 | 8,0-9  | 1,3+5 | 1,7+1 | #2 | 2,4-8  | 4,2+4 |
| Te-131m | 1,25 сут      | #2 | 5,8-9  | 1,7+5 | 9,1+1 | #2 | 1,4-8  | 7,1+4 |
| Te-132  | 3,26 сут      | #2 | 1,3-8  | 7,7+4 | 4,0+1 | #2 | 3,0-8  | 3,3+4 |
| I-124   | 4,18 сут      | #2 | 4,5-8  | 2,2+4 | 1,2+1 | #2 | 1,1-7  | 9,1+3 |
| I-125   | 60,1 сут      | #4 | 1,1-8  | 9,1+4 | 1,7+1 | #2 | 5,7-8  | 1,8+4 |
| I-126   | 13,0 сут      | #2 | 8,3-8  | 1,2+4 | 6,3   | #2 | 2,1-7  | 4,8+3 |
| I-129   | 1,57+7 лет    | #4 | 6,7-8  | 1,5+4 | 2,9   | #4 | 1,9-7  | 5,3+3 |
| I-131   | 8,04 сут      | #2 | 7,2-8  | 1,4+4 | 7,3   | #2 | 1,8-7  | 5,6+3 |
| Cs-129  | 1,34 сут      | #2 | 2,8-10 | 3,6+6 | 1,9+3 | #2 | 3,0-10 | 3,3+6 |
| Cs-131  | 9,69 сут      | #2 | 1,7-10 | 5,9+6 | 3,1+3 | #2 | 2,9-10 | 3,4+6 |
| Cs-132  | 6,48 сут      | #2 | 1,2-9  | 8,3+5 | 4,4+2 | #2 | 1,8-9  | 5,6+5 |
| Cs-134  | 2,06 лет      | #6 | 6,6-9  | 1,5+5 | 1,9+1 | #6 | 1,9-8  | 5,3+4 |
| Cs-135  | 2,30+6 лет    | #6 | 6,9-10 | 1,4+6 | 1,8+2 | #6 | 2,0-9  | 5,0+5 |
| Cs-136  | 13,1 сут      | #4 | 2,0-9  | 5,0+5 | 9,6+1 | #2 | 9,5-9  | 1,1+5 |
| Cs-137  | 30,0 лет      | #6 | 4,6-9  | 2,2+5 | 2,7+1 | #6 | 1,3-8  | 7,7+4 |
| Ba-128  | 2,43 сут      | #2 | 7,8-9  | 1,3+5 | 6,7+1 | #2 | 1,7-8  | 5,9+4 |
| Ba-131  | 11,8 сут      | #5 | 9,7-10 | 1,0+6 | 1,4+2 | #2 | 2,6-9  | 3,8+5 |
| Ba-133  | 10,7 лет      | #5 | 5,5-9  | 1,8+5 | 2,5+1 | #5 | 7,3-9  | 1,4+5 |
| Ba-133m | 1,62 сут      | #2 | 2,2-9  | 4,5+5 | 2,4+2 | #2 | 3,6-9  | 2,8+5 |
| Ba-135m | 1,20 сут      | #2 | 1,8-9  | 5,6+5 | 2,9+2 | #2 | 2,9-9  | 3,4+5 |
| Ba-140  | 12,7 сут      | #5 | 6,2-9  | 1,6+5 | 2,2+1 | #2 | 1,8-8  | 5,6+4 |
| La-137  | 6,00+4<br>лет | #6 | 8,7-9  | 1,1+5 | 1,4+1 | #2 | 4,5-10 | 2,2+6 |
| La-140  | 1,68 сут      | #2 | 6,3-9  | 1,6+5 | 8,4+1 | #2 | 1,3-8  | 7,7+4 |
| Ce-134  | 3,00 сут      | #2 | 7,6-9  | 1,3+5 | 6,9+1 | #2 | 1,8-8  | 5,6+4 |
| Ce-137m | 1,43 сут      | #2 | 2,2-9  | 4,5+5 | 2,4+2 | #2 | 3,9-9  | 2,6+5 |
| Ce-139  | 138 сут       | #5 | 2,1-9  | 4,8+5 | 6,5+1 | #2 | 1,6-9  | 6,3+5 |
| Ce-141  | 32,5 сут      | #5 | 4,1-9  | 2,4+5 | 3,3+1 | #2 | 5,1-9  | 2,0+5 |
| Ce-143  | 1,38 сут      | #2 | 3,9-9  | 2,6+5 | 1,3+2 | #2 | 8,0-9  | 1,3+5 |
| Ce-144  | 284 сут       | #2 | 1,6-7  | 6,3+3 | 3,3   | #2 | 3,9-8  | 2,6+4 |
| Pr-143  | 13,6 сут      | #5 | 3,0-9  | 3,3+5 | 4,6+1 | #2 | 8,7-9  | 1,1+5 |
| Nd-147  | 11,0 сут      | #5 | 3,0-9  | 3,3+5 | 4,6+1 | #2 | 7,8-9  | 1,3+5 |
| Pm-143  | 265 сут       | #5 | 1,7-9  | 5,9+5 | 8,1+1 | #2 | 1,2-9  | 8,3+5 |

| Pm-144        | 363 сут       | #5 | 9,3-9  | 1,1+5 | 1,5+1 | #2 | 4,7-9  | 2,1+5 |
|---------------|---------------|----|--------|-------|-------|----|--------|-------|
| Pm-145        | 17,7 лет      | #6 | 3,6-9  | 2,8+5 | 3,4+1 | #2 | 6,8-10 | 1,5+6 |
| Pm-146        | 5,53 лет      | #6 | 2,1-8  | 4,8+4 | 5,9   | #2 | 5,1-9  | 2,0+5 |
| Pm-147        | 2,62 лет      | #5 | 5,8-9  | 1,7+5 | 2,4+1 | #2 | 1,9-9  | 5,3+5 |
| Pm-148        | 5,37 сут      | #2 | 1,1-8  | 9,1+4 | 4,8+1 | #2 | 1,9-8  | 5,3+4 |
| P m -<br>148m | 41,3 сут      | #5 | 7,1-9  | 1,4+5 | 1,9+1 | #2 | 1,0-8  | 1,0+5 |
| Pm-149        | 2,21 сут      | #2 | 3,6-9  | 2,8+5 | 1,5+2 | #2 | 7,4-9  | 1,4+5 |
| Pm-151        | 1,18 сут      | #2 | 2,6-9  | 3,8+5 | 2,0+2 | #2 | 5,1-9  | 2,0+5 |
| Sm-145        | 340 сут       | #5 | 1,9-9  | 5,3+5 | 7,2+1 | #2 | 1,4-9  | 7,1+5 |
| Sm-146        | 1,03+8<br>лет | #6 | 1,1-5  | 9,1+1 | 1,1-2 | #2 | 1,5-7  | 6,7+3 |
| Sm-151        | 90,0 лет      | #6 | 4,0-9  | 2,5+5 | 3,1+1 | #2 | 6,4-10 | 1,6+6 |
| Sm-153        | 1,95 сут      | #5 | 7,9-10 | 1,3+6 | 1,7+2 | #2 | 5,4-9  | 1,9+5 |
| Eu-145        | 5,94 сут      | #2 | 2,9-9  | 3,4+5 | 1,8+2 | #2 | 3,7-9  | 2,7+5 |
| Eu-146        | 4,61 сут      | #2 | 4,4-9  | 2,3+5 | 1,2+2 | #2 | 6,2-9  | 1,6+5 |
| Eu-147        | 24,0 сут      | #5 | 1,3-9  | 7,7+5 | 1,1+2 | #2 | 2,5-9  | 4,0+5 |
| Eu-148        | 54,5 сут      | #4 | 4,6-9  | 2,2+5 | 4,2+1 | #2 | 6,0-9  | 1,7+5 |
| Eu-149        | 93,1 сут      | #5 | 3,5-10 | 2,9+6 | 3,9+2 | #2 | 6,3-10 | 1,6+6 |
| Eu-150        | 34,2 лет      | #6 | 5,3-8  | 1,9+4 | 2,3   | #2 | 5,7-9  | 1,8+5 |
| Eu-152        | 13,3 лет      | #6 | 4,2-8  | 2,4+4 | 2,9   | #2 | 7,4-9  | 1,4+5 |
| Eu-154        | 8,80 лет      | #6 | 5,3-8  | 1,9+4 | 2,3   | #2 | 1,2-8  | 8,3+4 |
| Eu-155        | 4,96 лет      | #6 | 6,9-9  | 1,4+5 | 1,8+1 | #2 | 2,2-9  | 4,5+5 |
| Eu-156        | 15,2 сут      | #5 | 4,2-9  | 2,4+5 | 3,3+1 | #2 | 1,5-8  | 6,7+4 |
| Gd-146        | 48,3 сут      | #5 | 7,9-9  | 1,3+5 | 1,7+1 | #2 | 6,0-9  | 1,7+5 |
| Gd-147        | 1,59 сут      | #2 | 2,2-9  | 4,5+5 | 2,4+2 | #2 | 3,2-9  | 3,1+5 |
| Gd-148        | 93,0 лет      | #6 | 2,6-5  | 3,8+1 | 4,7-3 | #2 | 1,6-7  | 6,3+3 |
| Gd-149        | 9,40 сут      | #5 | 9,2-10 | 1,1+6 | 1,5+2 | #2 | 2,7-9  | 3,7+5 |
| Gd-151        | 120 сут       | #2 | 4,9-9  | 2,0+5 | 1,1+2 | #2 | 1,3-9  | 7,7+5 |
| Gd-153        | 242 сут       | #2 | 1,2-8  | 8,3+4 | 4,4+1 | #2 | 1,8-9  | 5,6+5 |
| Tb-153        | 2,34 сут      | #2 | 1,0-9  | 1,0+6 | 5,3+2 | #2 | 1,5-9  | 6,7+5 |
| Tb-155        | 5,32 сут      | #5 | 2,7-10 | 3,7+6 | 5,1+2 | #2 | 1,3-9  | 7,7+5 |
| Tb-156        | 5,34 сут      | #5 | 1,5-9  | 6,7+5 | 9,1+1 | #2 | 6,3-9  | 1,6+5 |
| Tb-156m       | 1,02 сут      | #5 | 2,7-10 | 3,7+6 | 5,1+2 | #2 | 1,0-9  | 1,0+6 |
| Tb-157        | 1,50+2<br>лет | #6 | 1,2-9  | 8,3+5 | 1,0+2 | #2 | 2,2-10 | 4,5+6 |
| Tb-158        | 1,50+2<br>лет | #6 | 4,6-8  | 2,2+4 | 2,7   | #2 | 5,9-9  | 1,7+5 |
| Tb-160        | 72,3 сут      | #5 | 8,6-9  | 1,2+5 | 1,6+1 | #2 | 1,0-8  | 1,0+5 |
| Tb-161        | 6,91 сут      | #5 | 1,6-9  | 6,3+5 | 8,6+1 | #2 | 5,3-9  | 1,9+5 |
| Dy-159        | 144 сут       | #2 | 1,7-9  | 5,9+5 | 3,1+2 | #2 | 6,4-10 | 1,6+6 |
| Dy-166        | 3,40 сут      | #5 | 2,3-9  | 4,3+5 | 6,0+1 | #2 | 1,2-8  | 8,3+4 |

| Ho-166        | 1,12 сут      | #2 | 4,0-9  | 2,5+5 | 1,3+2 | #2 | 1,0-8  | 1,0+5 |
|---------------|---------------|----|--------|-------|-------|----|--------|-------|
| H o -<br>166m | 1,20+3<br>лет | #6 | 1,2-7  | 8,3+3 | 1,0   | #2 | 9,3-9  | 1,1+5 |
| Er-169        | 9,30 сут      | #5 | 1,3-9  | 7,7+5 | 1,1+2 | #2 | 2,8-9  | 3,6+5 |
| Er-172        | 2,05 сут      | #5 | 1,4-9  | 7,1+5 | 9,8+1 | #2 | 6,8-9  | 1,5+5 |
| Tm-167        | 9,24 сут      | #5 | 1,4-9  | 7,1+5 | 9,8+1 | #2 | 3,9-9  | 2,6+5 |
| Tm-170        | 129 сут       | #5 | 8,5-9  | 1,2+5 | 1,6+1 | #2 | 9,8-9  | 1,0+5 |
| Tm-171        | 1,92 лет      | #5 | 1,6-9  | 6,3+5 | 8,6+1 | #2 | 7,8-10 | 1,3+6 |
| Tm-172        | 2,65 сут      | #2 | 5,8-9  | 1,7+5 | 9,1+1 | #2 | 1,2-8  | 8,3+4 |
| Yb-166        | 2,36 сут      | #2 | 3,7-9  | 2,7+5 | 1,4+2 | #2 | 5,4-9  | 1,9+5 |
| Yb-169        | 32,0 сут      | #5 | 3,7-9  | 2,7+5 | 3,7+1 | #2 | 4,6-9  | 2,2+5 |
| Yb-175        | 4,19 сут      | #5 | 9,2-10 | 1,1+6 | 1,5+2 | #2 | 3,2-9  | 3,1+5 |
| Lu-169        | 1,42 сут      | #2 | 1,9-9  | 5,3+5 | 2,8+2 | #2 | 2,4-9  | 4,2+5 |
| Lu-170        | 2,00 сут      | #2 | 3,5-9  | 2,9+5 | 1,5+2 | #2 | 5,2-9  | 1,9+5 |
| Lu-171        | 8,22 сут      | #5 | 1,1-9  | 9,1+5 | 1,2+2 | #2 | 4,0-9  | 2,5+5 |
| Lu-172        | 6,70 сут      | #5 | 2,0-9  | 5,0+5 | 6,8+1 | #2 | 7,0-9  | 1,4+5 |
| Lu-173        | 1,37 лет      | #5 | 2,9-9  | 3,4+5 | 4,7+1 | #2 | 1,6-9  | 6,3+5 |
| Lu-174        | 3,31 лет      | #5 | 4,9-9  | 2,0+5 | 2,8+1 | #2 | 1,7-9  | 5,9+5 |
| Lu-174m       | 142 сут       | #5 | 5,0-9  | 2,0+5 | 2,7+1 | #2 | 3,8-9  | 2,6+5 |
| Lu-177        | 6,71 сут      | #5 | 1,5-9  | 6,7+5 | 9,1+1 | #2 | 3,9-9  | 2,6+5 |
| Lu-177m       | 161 сут       | #5 | 2,0-8  | 5,0+4 | 6,8   | #2 | 1,1-8  | 9,1+4 |
| Hf-172        | 1,87 лет      | #6 | 3,2-8  | 3,1+4 | 3,9   | #2 | 6,1-9  | 1,6+5 |
| Hf-175        | 70,0 сут      | #5 | 1,4-9  | 7,1+5 | 9,8+1 | #2 | 2,4-9  | 4,2+5 |
| Hf-178m       | 31,0 лет      | #6 | 2,6-7  | 3,8+3 | 4,7-1 | #2 | 1,9-8  | 5,3+4 |
| Hf-179m       | 25,1 сут      | #5 | 4,8-9  | 2,1+5 | 2,9+1 | #2 | 7,8-9  | 1,3+5 |
| Hf-181        | 42,4 сут      | #5 | 6,3-9  | 1,6+5 | 2,2+1 | #2 | 7,4-9  | 1,4+5 |
| Hf-182        | 9,00+6<br>лет | #6 | 3,1-7  | 3,2+3 | 4,0-1 | #2 | 7,9-9  | 1,3+5 |
| Ta-177        | 2,36 сут      | #2 | 5,0-10 | 2,0+6 | 1,1+3 | #2 | 6,9-10 | 1,4+6 |
| Ta-179        | 1,82 лет      | #5 | 6,4-10 | 1,6+6 | 2,1+2 | #2 | 4,1-10 | 2,4+6 |
| Ta-182        | 115 сут       | #5 | 1,3-8  | 7,7+4 | 1,1+1 | #2 | 9,4-9  | 1,1+5 |
| Ta-183        | 5,10 сут      | #5 | 2,7-9  | 3,7+5 | 5,1+1 | #2 | 9,3-9  | 1,1+5 |
| W-178         | 21,7 сут      | #2 | 5,4-10 | 1,9+6 | 9,7+2 | #2 | 1,4-9  | 7,1+5 |
| W-181         | 121 сут       | #2 | 1,9-10 | 5,3+6 | 2,8+3 | #2 | 4,7-10 | 2,1+6 |
| W-185         | 75,1 сут      | #2 | 1,0-9  | 1,0+6 | 5,3+2 | #2 | 3,3-9  | 3,0+5 |
| W-188         | 69,4 сут      | #2 | 5,0-9  | 2,0+5 | 1,1+2 | #2 | 1,5-8  | 6,7+4 |
| Re-182        | 2,67 сут      | #2 | 6,3-9  | 1,6+5 | 8,4+1 | #2 | 8,9-9  | 1,1+5 |
| Re-184        | 38,0 сут      | #5 | 2,4-9  | 4,2+5 | 5,7+1 | #2 | 5,6-9  | 1,8+5 |
| Re-184m       | 165 сут       | #5 | 8,1-9  | 1,2+5 | 1,7+1 | #2 | 9,8-9  | 1,0+5 |
| Re-186        | 3,78 сут      | #2 | 5,7-9  | 1,8+5 | 9,2+1 | #2 | 1,1-8  | 9,1+4 |
| Re-186m       | 2,00+5 лет    | #5 | 1,4-8  | 7,1+4 | 9,8   | #2 | 1,6-8  | 6,3+4 |

| Re-189        | 1,01 сут      |      | #2 | 2,6-9  | 3,8+5 | 2,0+2 | #2 | 6,2-9  | 1,6+5 |
|---------------|---------------|------|----|--------|-------|-------|----|--------|-------|
| Os-185        | 94,0 сут      |      | #5 | 1,9-9  | 5,3+5 | 7,2+1 | #2 | 2,6-9  | 3,8+5 |
| Os-191        | 15,4 сут      |      | #5 | 2,3-9  | 4,3+5 | 6,0+1 | #2 | 4,1-9  | 2,4+5 |
| Os-193        | 1,25 сут      |      | #2 | 2,7-9  | 3,7+5 | 1,9+2 | #2 | 6,0-9  | 1,7+5 |
| Os-194        | 6,00 лет      |      | #6 | 8,5-8  | 1,2+4 | 1,5   | #2 | 1,7-8  | 5,9+4 |
| Ir-188        | 1,73 сут      |      | #2 | 2,2-9  | 4,5+5 | 2,4+2 | #2 | 3,3-9  | 3,0+5 |
| Ir-189        | 13,3 сут      |      | #5 | 7,3-10 | 1,4+6 | 1,9+2 | #2 | 1,7-9  | 5,9+5 |
| Ir-190        | 12,1 сут      |      | #5 | 3,0-9  | 3,3+5 | 4,6+1 | #2 | 7,1-9  | 1,4+5 |
| Ir-192        | 74,0 сут      |      | #5 | 8,1-9  | 1,2+5 | 1,7+1 | #2 | 8,7-9  | 1,1+5 |
| Ir-192m       | 2,41+2<br>лет |      | #6 | 3,9-8  | 2,6+4 | 3,2   | #2 | 1,4-9  | 7,1+5 |
| Ir-193m       | 11,9 сут      |      | #5 | 1,6-9  | 6,3+5 | 8,6+1 | #2 | 2,0-9  | 5,0+5 |
| Ir-194m       | 171 сут       |      | #5 | 1,5-8  | 6,7+4 | 9,1   | #2 | 1,1-8  | 9,1+4 |
| Pt-188        | 10,2 сут      |      | #2 | 2,7-9  | 3,7+5 | 1,9+2 | #2 | 4,5-9  | 2,2+5 |
| Pt-191        | 2,80 сут      |      | #2 | 7,9-10 | 1,3+6 | 6,7+2 | #2 | 2,1-9  | 4,8+5 |
| Pt-193        | 50,0 лет      |      | #2 | 1,6-10 | 6,3+6 | 3,3+3 | #2 | 2,4-10 | 4,2+6 |
| Pt-193m       | 4,33 сут      |      | #2 | 1,0-9  | 1,0+6 | 5,3+2 | #2 | 3,4-9  | 2,9+5 |
| Pt-195m       | 4,02 сут      |      | #2 | 1,5-9  | 6,7+5 | 3,5+2 | #2 | 4,6-9  | 2,2+5 |
| Au-194        | 1,65 сут      |      | #2 | 1,4-9  | 7,1+5 | 3,8+2 | #2 | 2,2-9  | 4,5+5 |
| Au-195        | 183 сут       |      | #5 | 2,1-9  | 4,8+5 | 6,5+1 | #2 | 1,7-9  | 5,9+5 |
| Au-198        | 2,69 сут      |      | #2 | 4,4-9  | 2,3+5 | 1,2+2 | #2 | 7,2-9  | 1,4+5 |
| A u -<br>198m | 2,30 сут      |      | #5 | 2,5-9  | 4,0+5 | 5,5+1 | #2 | 8,5-9  | 1,2+5 |
| Au-199        | 3,14 сут      |      | #5 | 1,0-9  | 1,0+6 | 1,4+2 | #2 | 3,1-9  | 3,2+5 |
| Hg-194        | 2,60+2<br>лет | [8]  | #6 | 1,4-8  | 7,1+4 | 8,8   | #2 | 1,2-7  | 8,3+3 |
|               |               | [9]  | #6 | 1,3-8  | 7,7+4 | 9,5   | #2 | 3,6-9  | 2,8+5 |
| H g -<br>195m | 1,73 сут      | [11] | #2 | 9,7-10 | 1,0+6 | 5,4+2 | #2 | 2,8-9  | 3,6+5 |
|               |               | [12] | #2 | 2,6-9  | 3,8+5 | 2,0+2 | #2 | 3,8-9  | 2,6+5 |
| Hg-197        | 2,67 сут      | [11] | #2 | 4,0-10 | 2,5+6 | 1,3+3 | #2 | 1,2-9  | 8,3+5 |
|               |               | [12] | #5 | 3,8-10 | 2,6+6 | 3,6+2 | #2 | 1,6-9  | 6,3+5 |
| Hg-203        | 46,6 сут      | [11] | #2 | 3,7-9  | 2,7+5 | 1,4+2 | #2 | 1,1-8  | 9,1+4 |
|               |               | [12] | #5 | 3,0-9  | 3,3+5 | 4,6+1 | #2 | 3,6-9  | 2,8+5 |
| T1-200        | 1,09 сут      |      | #2 | 8,7-10 | 1,1+6 | 6,0+2 | #2 | 9,1-10 | 1,1+6 |
| T1-201        | 3,04 сут      |      | #2 | 3,3-10 | 3,0+6 | 1,6+3 | #2 | 5,5-10 | 1,8+6 |
| T1-202        | 12,2 сут      |      | #2 | 1,2-9  | 8,3+5 | 4,4+2 | #2 | 2,1-9  | 4,8+5 |
| T1-204        | 3,78 лет      |      | #2 | 3,3-9  | 3,0+5 | 1,6+2 | #2 | 8,5-9  | 1,2+5 |
| Pb-202        | 3,00+5<br>лет |      | #5 | 8,7-9  | 1,1+5 | 1,6+1 | #5 | 2,7-8  | 3,7+4 |
| Pb-203        | 2,17 сут      |      | #2 | 1,0-9  | 1,0+6 | 5,3+2 | #2 | 1,3-9  | 7,7+5 |
| Pb-205        | 1,43+7<br>лет |      | #5 | 2,9-10 | 3,4+6 | 4,7+2 | #2 | 9,9-10 | 1,0+6 |

| Pb-210  | 22,3 лет       | #5 | 1,3-6  | 7,7+2 | 1,1-1 | #2 | 3,6-6 | 2,8+2 |
|---------|----------------|----|--------|-------|-------|----|-------|-------|
| Bi-205  | 15,3 сут       | #5 | 1,2-9  | 8,3+5 | 1,1+2 | #2 | 4,5-9 | 2,2+5 |
| Bi-206  | 6,24 сут       | #5 | 2,1-9  | 4,8+5 | 6,5+1 | #2 | 1,0-8 | 1,0+5 |
| Bi-207  | 38,0 лет       | #5 | 6,5-9  | 1,5+5 | 2,1+1 | #2 | 7,1-9 | 1,4+5 |
| Bi-210  | 5,01 сут       | #5 | 1,1-7  | 9,1+3 | 1,2   | #2 | 9,7-9 | 1,0+5 |
| Bi-210m | 3,00+6 лет     | #5 | 4,1-6  | 2,4+2 | 3,3-2 | #2 | 9,1-8 | 1,1+4 |
| Po-210  | 138 сут        | #5 | 4,0-6  | 2,5+2 | 3,4-2 | #2 | 8,8-6 | 1,1+2 |
| Ra-223  | 11,4 сут       | #5 | 9,4-6  | 1,1+2 | 1,5-2 | #2 | 1,1-6 | 9,1+2 |
| Ra-224  | 3,66 сут       | #5 | 3,7-6  | 2,7+2 | 3,7-2 | #2 | 6,6-7 | 1,5+3 |
| Ra-225  | 14,8 сут       | #5 | 7,9-6  | 1,3+2 | 1,7-2 | #2 | 1,2-6 | 8,3+2 |
| Ra-226  | 1,60+3<br>лет  | #5 | 4,5-6  | 2,2+2 | 3,0-2 | #5 | 1,5-6 | 6,7+2 |
| Ra-228  | 5,75 лет       | #5 | 4,4-6  | 2,3+2 | 3,1-2 | #5 | 5,3-6 | 1,9+2 |
| Ac-225  | 10,0 сут       | #5 | 1,1-5  | 9,1+1 | 1,2-2 | #2 | 1,8-7 | 5,6+3 |
| Ac-226  | 1,21 сут       | #5 | 1,6-6  | 6,3+2 | 8,6-2 | #2 | 7,6-8 | 1,3+4 |
| Ac-227  | 21,8 лет       | #6 | 5,5-4  | 1,8   | 2,2-4 | #2 | 3,1-6 | 3,2+2 |
| Th-227  | 18,7 сут       | #5 | 1,3-5  | 7,7+1 | 1,1-2 | #2 | 7,0-8 | 1,4+4 |
| Th-228  | 1,91 лет       | #5 | 4,7-5  | 2,1+1 | 2,9-3 | #2 | 3,7-7 | 2,7+3 |
| Th-229  | 7,34+3<br>лет  | #6 | 7,1-5  | 1,4+1 | 1,7-3 | #2 | 1,0-6 | 1,0+3 |
| Th-230  | 7,70+4<br>лет  | #6 | 1,4-5  | 7,1+1 | 8,8-3 | #2 | 4,1-7 | 2,4+3 |
| Th-231  | 1,06 сут       | #2 | 1,7-9  | 5,9+5 | 3,1+2 | #2 | 2,5-9 | 4,0+5 |
| Th-232  | 1,40+10<br>лет | #6 | 2,5-5  | 4,0+1 | 4,9-3 | #2 | 4,5-7 | 2,2+3 |
| Th-234  | 24,1 сут       | #5 | 9,1-9  | 1,1+5 | 1,5+1 | #2 | 2,5-8 | 4,0+4 |
| Pa-230  | 17,4 сут       | #5 | 9,6-7  | 1,0+3 | 1,4-1 | #2 | 5,7-9 | 1,8+5 |
| Pa-231  | 3,27+4 лет     | #6 | 1,4-4  | 7,1   | 8,8-4 | #2 | 1,3-6 | 7,7+2 |
| Pa-232  | 1,31 сут       | #6 | 1,0-8  | 1,0+5 | 1,2+1 | #2 | 4,2-9 | 2,4+5 |
| Pa-233  | 27,0 сут       | #5 | 4,9-9  | 2,0+5 | 2,8+1 | #2 | 6,2-9 | 1,6+5 |
| U-230   | 20,8 сут       | #5 | 1,7-5  | 5,9+1 | 8,1-3 | #2 | 3,0-7 | 3,3+3 |
| U-231   | 4,20 сут       | #5 | 4,6-10 | 2,2+6 | 3,0+2 | #2 | 2,0-9 | 5,0+5 |
| U-232   | 72,0 лет       | #5 | 1,0-5  | 1,0+2 | 1,4-2 | #5 | 6,4-7 | 1,6+3 |
| U-233   | 1,58+5 лет     | #5 | 4,3-6  | 2,3+2 | 3,2-2 | #2 | 1,4-7 | 7,1+3 |
| U-234   | 2,44+5 лет     | #5 | 4,2-6  | 2,4+2 | 3,3-2 | #2 | 1,3-7 | 7,7+3 |
| U-235   | 7,04+8<br>лет  | #5 | 3,7-6  | 2,7+2 | 3,7-2 | #2 | 1,3-7 | 7,7+3 |
| U-236   | 2,34+7 лет     | #5 | 3,9-6  | 2,6+2 | 3,5-2 | #2 | 1,3-7 | 7,7+3 |
|         | 6,75 сут       | #5 | 2,1-9  | 4,8+5 | 6,5+1 | #2 | 5,4-9 | 1,9+5 |

| U-238         | 4,47+9<br>лет | #5 | 3,4-6  | 2,9+2 | 4,0-2 | #2 | 1,2-7  | 8,4+3 |
|---------------|---------------|----|--------|-------|-------|----|--------|-------|
| Np-234        | 4,40 сут      | #2 | 3,0-9  | 3,3+5 | 1,8+2 | #2 | 4,4-9  | 2,3+5 |
| Np-235        | 1,08 лет      | #5 | 5,1-10 | 2,0+6 | 2,7+2 | #2 | 4,1-10 | 2,4+6 |
| Np-236        | 1,15+5<br>лет | #6 | 3,2-6  | 3,1+2 | 3,9-2 | #5 | 1,8-8  | 5,6+4 |
| Np-237        | 2,14+6 лет    | #6 | 2,3-5  | 4,3+1 | 5,4-3 | #2 | 2,1-7  | 4,8+3 |
| Np-238        | 2,12 сут      | #6 | 2,1-9  | 4,8+5 | 5,9+1 | #2 | 6,2-9  | 1,6+5 |
| Np-239        | 2,36 сут      | #5 | 1,2-9  | 8,3+5 | 1,1+2 | #2 | 5,7-9  | 1,8+5 |
| Pu-236        | 2,85 лет      | #6 | 2,0-5  | 5,0+1 | 6,2-3 | #2 | 2,2-7  | 4,5+3 |
| Pu-237        | 45,3 сут      | #5 | 4,3-10 | 2,3+6 | 3,2+2 | #2 | 6,9-10 | 1,4+6 |
| Pu-238        | 87,7 лет      | #6 | 4,6-5  | 2,2+1 | 2,7-3 | #2 | 4,0-7  | 2,5+3 |
| Pu-239        | 2,41+4 лет    | #6 | 5,0-5  | 2,0+1 | 2,5-3 | #2 | 4,2-7  | 2,4+3 |
| Pu-240        | 6,54+3<br>лет | #6 | 5,0-5  | 2,0+1 | 2,5-3 | #2 | 4,2-7  | 2,4+3 |
| Pu-241        | 14,4 лет      | #6 | 9,0-7  | 1,1+3 | 1,4-1 | #6 | 4,8-9  | 2,1+5 |
| Pu-242        | 3,76+5 лет    | #6 | 4,8-5  | 2,1+1 | 2,6-3 | #2 | 4,0-7  | 2,5+3 |
| Pu-244        | 8,26+7 лет    | #6 | 4,7-5  | 2,1+1 | 2,6-3 | #2 | 4,1-7  | 2,4+3 |
| Pu-246        | 10,9 сут      | #5 | 9,1-9  | 1,1+5 | 1,5+1 | #2 | 2,3-8  | 4,3+4 |
| Am-240        | 2,12 сут      | #2 | 2,2-9  | 4,5+5 | 2,4+2 | #2 | 3,3-9  | 3,0+5 |
| Am-241        | 4,32+2<br>лет | #6 | 4,2-5  | 2,4+1 | 2,9-3 | #2 | 3,7-7  | 2,7+3 |
| A m -<br>242m | 1,52+2<br>лет | #6 | 3,7-5  | 2,7+1 | 3,3-3 | #2 | 3,0-7  | 3,3+3 |
| Am-243        | 7,38+3<br>лет | #6 | 4,1-5  | 2,4+1 | 3,0-3 | #2 | 3,7-7  | 2,7+3 |
| Cm-240        | 27,0 сут      | #5 | 3,8-6  | 2,6+2 | 3,6-2 | #2 | 4,8-8  | 2,1+4 |
| Cm-241        | 32,8 сут      | #5 | 4,4-8  | 2,3+4 | 3,1   | #2 | 5,7-9  | 1,8+5 |
| Cm-242        | 163 сут       | #5 | 6,4-6  | 1,6+2 | 2,1-2 | #2 | 7,6-8  | 1,3+4 |
| Cm-243        | 28,5 лет      | #6 | 3,1-5  | 3,2+1 | 4,0-3 | #2 | 3,3-7  | 3,0+3 |
| Cm-244        | 18,1 лет      | #6 | 2,7-5  | 3,7+1 | 4,6-3 | #2 | 2,9-7  | 3,4+3 |
| Cm-245        | 8,50+3<br>лет | #6 | 4,2-5  | 2,4+1 | 2,9-3 | #2 | 3,7-7  | 2,7+3 |
| Cm-246        | 4,73+3<br>лет | #6 | 4,2-5  | 2,4+1 | 2,9-3 | #2 | 3,7-7  | 2,7+3 |
| Cm-247        | 1,56+7<br>лет | #6 | 3,9-5  | 2,6+1 | 3,2-3 | #2 | 3,5-7  | 2,9+3 |
| Cm-248        | 3,39+5 лет    | #6 | 1,5-4  | 6,7   | 8,2-4 | #2 | 1,4-6  | 7,1+2 |
| Cm-250        | 6,90+3<br>лет | #6 | 8,4-4  | 1,2   | 1,5-4 | #2 | 8,2-6  | 1,2+2 |

| Bk-245  | 4,94 сут      | #5 | 2,6-9 | 3,8+5 | 5,3+1 | #2 | 3,9-9 | 2,6+5 |
|---------|---------------|----|-------|-------|-------|----|-------|-------|
| Bk-246  | 1,83 сут      | #2 | 1,7-9 | 5,9+5 | 3,1+2 | #2 | 2,6-9 | 3,8+5 |
| Bk-247  | 1,38+3<br>лет | #6 | 6,9-5 | 1,4+1 | 1,8-3 | #2 | 8,6-7 | 1,2+3 |
| Bk-249  | 320 сут       | #6 | 1,6-7 | 6,3+3 | 7,7-1 | #2 | 2,9-9 | 3,4+5 |
| Cf-246  | 1,49 сут      | #5 | 5,7-7 | 1,8+3 | 2,4-1 | #2 | 2,4-8 | 4,2+4 |
| Cf-248  | 334 сут       | #5 | 1,0-5 | 1,0+2 | 1,4-2 | #2 | 1,6-7 | 6,3+3 |
| Cf-249  | 3,50+2<br>лет | #6 | 7,0-5 | 1,4+1 | 1,8-3 | #2 | 8,7-7 | 1,1+3 |
| Cf-250  | 13,1 лет      | #6 | 3,4-5 | 2,9+1 | 3,6-3 | #2 | 5,5-7 | 1,8+3 |
| Cf-251  | 8,98+2<br>лет | #6 | 7,1-5 | 1,4+1 | 1,7-3 | #2 | 8,8-7 | 1,1+3 |
| Cf-252  | 2,64 лет      | #3 | 5,6-5 | 1,8+1 | 5,6-3 | #2 | 5,1-7 | 2,0+3 |
| Cf-253  | 17,8 сут      | #5 | 1,7-6 | 5,9+2 | 8,1-2 | #2 | 1,1-8 | 9,1+4 |
| Cf-254  | 60,5 сут      | #4 | 7,0-5 | 1,4+1 | 2,7-3 | #2 | 2,6-6 | 3,8+2 |
| Es-251  | 1,38 сут      | #5 | 2,6-9 | 3,8+5 | 5,3+1 | #2 | 1,2-9 | 8,3+5 |
| Es-253  | 20,5 сут      | #5 | 3,4-6 | 2,9+2 | 4,0-2 | #2 | 4,5-8 | 2,2+4 |
| Es-254  | 276 сут       | #5 | 1,0-5 | 1,0+2 | 1,4-2 | #2 | 1,6-7 | 6,3+3 |
| Es-254m | 1,64 сут      | #5 | 5,9-7 | 1,7+3 | 2,3-1 | #2 | 3,0-8 | 3,3+4 |
| Fm-253  | 3,00 сут      | #5 | 5,0-7 | 2,0+3 | 2,7-1 | #2 | 6,7-9 | 1,5+5 |
| Fm-257  | 101 сут       | #5 | 8,8-6 | 1,1+2 | 1,6-2 | #2 | 1,1-7 | 9,1+3 |
| Md-258  | 55,0 сут      | #5 | 7,3-6 | 1,4+2 | 1,9-2 | #2 | 8,9-8 | 1,1+4 |

[1]За исключением случаев, отмеченных особо, регламентированные значения относятся ко всем возможным соединениям радионуклидов, поступающим в организм с воздухом, пищей и водой;

[2]Обозначение критических групп: #1 - новорожденные дети до 1 года; #2 - дети в возрасте 1-2 года; #3 - дети в возрасте 2-7 лет; #4 - дети в возрасте 7-12 лет; #5 - дети в возрасте 12-17 лет; #6 - взрослые (старше 17лет);

- [3] Неорганические соединения трития;
- [4]Органические соединения трития;
- [5] Неорганические соединения серы;
- [6]Органические соединения серы;
- $^{[7]}$ При поступлении изотопа  $^{40}$ К дополнительно к природной смеси изотопов калия;
  - [8]Органические соединения ртути,
  - [9] Неорганические соединения ртути.

Значения дозовых коэффициентов е (мЗв/Бк) при поступлении радионуклидов в организм взрослых людей с водой и уровни вмешательства УВ (Бк/кг) по содержанию отдельных радионуклидов в питьевой воде

| Нуклид      | ε      | УВ,   | Нуклид  | 3      | УВ,   |
|-------------|--------|-------|---------|--------|-------|
| 11) 10111,4 | мЗв/Бк | Бк/кг |         | мЗв/Бк | Бк/кг |
| 1           | 2      | 3     | 4       | 5      | 6     |
| H-3         | 1,8-8  | 7600  | Tc-97   | 6,8-8  | 2000  |
| Be-7        | 2,8-8  | 4900  | Tc-97m  | 5,5-7  | 250   |
| C-14        | 5,8-7  | 240   | Tc-99   | 6,4-7  | 210   |
| Na-22       | 3,2-6  | 43    | Ru-97   | 1,5-7  | 910   |
| P-32        | 2,4-6  | 57    | Ru-103  | 7,3-7  | 190   |
| P-33        | 2,4-7  | 570   | Ru-106  | 7,0-6  | 20    |
| S-35        | 7,7-7  | 178   | Rh-105  | 3,7-7  | 370   |
| Cl-36       | 9,3-7  | 150   | Pd-103  | 1,9-7  | 720   |
| Ca-45       | 7,1-7  | 190   | Ag-105  | 4,7-7  | 290   |
| Ca-47       | 1,6-6  | 86    | Ag-110m | 2,8-6  | 49    |
| Sc-46       | 1,5-6  | 91    | Ag-111  | 1,3-6  | 110   |
| Sc-47       | 5,4-7  | 250   | Cd-109  | 2,0-6  | 69    |
| Sc-48       | 1,7-6  | 81    | Cd-115  | 1,4-6  | 98    |
| V-48        | 2,0-6  | 69    | Cd-115m | 3,3-6  | 42    |
| Cr-51       | 3,8-8  | 3600  | In-111  | 2,9-7  | 470   |
| Mn-51       | 9,3-8  | 1500  | In-114m | 4,1-6  | 33    |
| Mn-52       | 1,8-6  | 76    | Sn-113  | 7,3-7  | 190   |
| Mn-53       | 3,0-8  | 4600  | Sn-125  | 3,1-6  | 44    |
| Mn-54       | 7,1-7  | 193   | Sb-122  | 1,7-6  | 81    |
| Fe-55       | 3,3-7  | 420   | Sb-124  | 2,5-6  | 55    |
| Fe-59       | 1,8-6  | 76    | Sb-125  | 1,1-6  | 120   |
| Co-56       | 2,5-6  | 55    | Te-123m | 1,6-6  | 86    |
| Co-57       | 2,1-7  | 650   | Te-127  | 1,7-7  | 810   |
| Co-58       | 7,4-7  | 190   | Te-127m | 2,3-6  | 60    |
| Co-60       | 3,4-6  | 40    | Te-129  | 6,3-8  | 2100  |
| Ni-59       | 6,3-8  | 2200  | Te-129m | 3,0-6  | 46    |
| Ni-63       | 1,5-7  | 910   | Te-131  | 8,7-8  | 1600  |
| Zn-65       | 3,9-6  | 35    | Te-131m | 1,9-6  | 72    |
| Ge-71       | 1,2-8  | 11400 | Te-132  | 3,8-6  | 36    |
| As-73       | 2,6-7  | 530   | I-123   | 2,1-7  | 650   |
| As-74       | 1,3-6  | 110   | I-125   | 1,5-5  | 9,1   |
| As-76       | 1,6-6  | 86    | I-126   | 2,9-5  | 4,7   |
| As-77       | 4,0-7  | 340   | I-129   | 1,1-4  | 1,3   |

| Se-75   | 2,6-6 | 53   | I-130  | 2,0-6 | 69   |
|---------|-------|------|--------|-------|------|
| Br-82   | 5,4-7 | 250  | I-131  | 2,2-5 | 6,2  |
| Rb-86   | 2,8-6 | 49   | Cs-129 | 6,0-8 | 2300 |
| Sr-85   | 5,6-7 | 240  | Cs-131 | 5,8-8 | 2400 |
| Sr-89   | 2,6-6 | 53   | Cs-132 | 5,0-7 | 270  |
| Sr-90   | 2,8-5 | 4,9  | Cs-134 | 1,9-5 | 7,2  |
| Y-90    | 2,7-6 | 51   | Cs-135 | 2,0-6 | 69   |
| Y-91    | 2,4-6 | 57   | Cs-136 | 3,0-6 | 46   |
| Zr-93   | 1,1-6 | 120  | Cs-137 | 1,3-5 | 11   |
| Zr-95   | 9,5-7 | 140  | Cs-137 | 9,2-8 | 1500 |
| Nb-93m  | 1,2-7 | 1100 | Ba-131 | 4,5-7 | 300  |
| Nb-94   |       | 81   | Ba-131 |       | 53   |
|         | 1,7-6 |      |        | 2,6-6 |      |
| Nb-95   | 5,8-7 | 240  | La-140 | 2,0-6 | 69   |
| Mo-93   | 3,1-6 | 44   | Ce-139 | 2,6-7 | 530  |
| Mo-99   | 6,0-7 | 220  | Ce-141 | 7,1-7 | 190  |
| Tc-96   | 1,1-6 | 120  | Ce-143 | 1,1-6 | 120  |
| Ce-144  | 5,2-6 | 26   | Th-231 | 3,4-7 | 400  |
| Pr-143  | 1,2-6 | 110  | Th-232 | 2,3-4 | 0,60 |
| Nd-147  | 1,1-6 | 120  | Th-234 | 3,4-6 | 40   |
| Pm-147  | 2,6-7 | 530  | U-230  | 5,6-5 | 2,5  |
| Pm-149  | 9,9-7 | 140  | U-231  | 2,8-7 | 490  |
| Sm-151  | 9,8-8 | 1400 | U-232  | 3,3-4 | 0,42 |
| Sm-153  | 7,4-7 | 190  | U-233  | 5,1-5 | 2,7  |
| Eu-152  | 1,4-6 | 98   | U-234  | 4,9-5 | 2,8  |
| Eu-154  | 2,0-6 | 69   | U-235  | 4,7-5 | 2,9  |
| Eu-155  | 3,2-7 | 430  | U-236  | 4,7-5 | 2,9  |
| Gd-153  | 2,7-7 | 510  | U-237  | 7,6-7 | 180  |
| Tb-160  | 1,6-6 | 86   | U-238  | 4,5-5 | 3,0  |
| Er-169  | 3,7-7 | 370  | Pa-230 | 9,2-7 | 150  |
| Tm-171  | 1,1-7 | 1200 | Pa-231 | 7,1-4 | 0,19 |
| Yb-175  | 4,4-7 | 310  | Pa-233 | 8,7-7 | 160  |
| Ta-182  | 1,5-6 | 91   | Np-237 | 1,1-4 | 1,3  |
| W-181   | 7,6-8 | 1800 | Np-239 | 8,0-7 | 170  |
| W-185   | 4,4-7 | 310  | Pu-236 | 8,7-5 | 1,6  |
| Re-186  | 1,5-6 | 91   | Pu-237 | 1,0-7 | 1400 |
| Os-185  | 5,1-7 | 270  | Pu-238 | 2,3-4 | 0,60 |
| Os-191  | 5,7-7 | 240  | Pu-239 | 2,5-4 | 0,55 |
| Os-193  | 8,1-7 | 170  | Pu-240 | 2,5-4 | 0,55 |
| Ir-190  | 1,2-6 | 110  | Pu-241 | 4,8-6 | 29   |
| Ir-192  | 1,4-6 | 98   | Pu-242 | 2,4-4 | 0,57 |
| Pt-191  | 3,4-7 | 400  | Pu-244 | 2,4-4 | 0,57 |
| Pt-193m | 4,5-7 | 300  | Am-241 | 2,0-4 | 0,69 |

| Au-198 | 1,0-6 | 140  | Am-242  | 3,0-7 | 460  |
|--------|-------|------|---------|-------|------|
| Au-199 | 4,4-7 | 310  | Am-242m | 1,9-4 | 0,72 |
| Hg-197 | 2,3-7 | 600  | Am-243  | 2,0-4 | 0,69 |
| Hg-203 | 1,9-6 | 72   | Cm-242  | 1,0-5 | 14   |
| T1-200 | 2,0-7 | 690  | Cm-243  | 1,5-4 | 0,91 |
| T1-201 | 9,5-8 | 1400 | Cm-244  | 1,2-4 | 1,1  |
| T1-202 | 4,5-7 | 300  | Cm-245  | 2,1-4 | 0,65 |
| T1-204 | 1,2-6 | 110  | Cm-246  | 2,1-4 | 0,65 |
| Pb-203 | 2,4-7 | 570  | Cm-247  | 1,9-4 | 0,72 |
| Pb-210 | 6,9-4 | 0,20 | Cm-248  | 7,7-4 | 0,18 |
| Bi-206 | 1,9-6 | 72   | Bk-249  | 5,7-7 | 240  |
| Bi-207 | 1,3-6 | 110  | Cf-246  | 3,3-6 | 42   |
| Bi-210 | 1,3-6 | 110  | Cf-248  | 2,8-5 | 4,9  |
| Po-210 | 1,2-3 | 0,11 | Cf-249  | 3,5-4 | 0,39 |
| Ra-223 | 1,0-4 | 1,4  | Cf-250  | 1,6-4 | 0,86 |
| Ra-224 | 6,5-5 | 2,1  | Cf-251  | 3,6-4 | 0,38 |
| Ra-225 | 9,9-5 | 1,4  | Cf-252  | 9,0-5 | 1,5  |
| Ra-226 | 2,8-4 | 0,49 | Cf-253  | 1,4-6 | 98   |
| Ra-228 | 6,9-4 | 0,20 | Cf-254  | 4,0-4 | 0,34 |
| Th-227 | 8,8-6 | 16   | Es-253  | 6,1-6 | 22   |
| Th-228 | 7,2-5 | 1,9  | Es-254  | 2,8-5 | 4,9  |
| Th-229 | 4,9-4 | 0,28 | Es-254m | 4,2-6 | 33   |
| Th-230 | 2,1-4 | 0,65 |         |       |      |

Перечисленные ниже материнские радионуклиды приведены в условиях их равновесия с дочерними:

| L      |                                        |
|--------|----------------------------------------|
| Sr-90  | Y-90                                   |
| Zr-93  | Nb-93m                                 |
| Zr-97  | Nb-97                                  |
| Ru-106 | Rh-106                                 |
| Cs-137 | Ba-137m                                |
| Ba-140 | La-140                                 |
| Ce-134 | La-134                                 |
| Ce-144 | Pr-144                                 |
| Pb-210 | Bi-210, Po-210                         |
| Pb-212 | Bi-212, Tl-208 (0.36), Po-212 (0.64)   |
| Bi-212 | Tl-208 (0.36), Po-212 (0.64)           |
| Rn-220 | Po-216                                 |
| Rn-222 | Po-218, Pb-214, Bi-214, Po-214         |
| Ra-223 | Rn-219, Po-215, Pb-211, Bi-211, Tl-207 |
|        |                                        |
|        |                                        |

| Ra-224                                                                                       | Rn-220, Po-216, Pb-212, Bi-212, Tl-208(0.36), Po-212(0.64)                                   |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Ra-226                                                                                       | Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210, Po-210                               |
| Ra-228                                                                                       | Ac-228                                                                                       |
| Th-226                                                                                       | Ra-222, Rn-218, Po-214                                                                       |
| Th-228                                                                                       | Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36)<br>, Po-212 (0.64)                     |
| Th-229                                                                                       | Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209                                       |
| Th-232                                                                                       | Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64) |
| Тһ-природный                                                                                 | Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64) |
| Th-234                                                                                       | Pa-234m                                                                                      |
| U-230                                                                                        | Th-226, Ra-222, Rn-218, Po-214                                                               |
| U-232                                                                                        | Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64)                 |
| U-235                                                                                        | Th-231                                                                                       |
| U-238                                                                                        | Th-234, Pa-234m                                                                              |
| U-природный Th-234, Pa-234m, U-234, Th-230, Ra-226 218, Pb-214, Bi-214, Po-214, Pb-210, Bi-2 |                                                                                              |
| U-240                                                                                        | Np-240m                                                                                      |
| Np-237                                                                                       | Pa-233                                                                                       |
| Am-242m                                                                                      | Am-242                                                                                       |
| Am-243                                                                                       | Np-239                                                                                       |

При уровнях активности радионуклидов, меньше приведенных в таблице и условии применения МЗУА и МЗА одновременно, эффективная индивидуальная годовая доза облучения лиц из персонала и населения не превысит 10 мкЗв и в аварийных случаях 1 мЗв, а коллективная эффективная доза 1 чел-Зв при любых условиях использования. Эквивалентная доза на кожу не превысит 50 мЗв/год.

Природные радионуклиды оценивались при их попадании в потребительские товары из техногенных источников (например, Ra-226, Po-210) или по их химической токсичности (для тория, урана и другие).

Если присутствует несколько нуклидов, то сумма отношений активности к их табличным значениям не должна превышать единицу. Приведенные в таблице радионуклиды в зависимости от минимально значимой суммарной активности (МЗА) делятся на 4 группы радиационной опасности:

- 1) A  $1 \times 10^3$  Бк;
- 2) Б  $1x10^4$  и  $1x10^5$  Бк;

- 3) В  $1x10^6$  и  $1x10^7$  Бк;
- 4)  $\Gamma$  1х $10^{8}$  и 1х $10^{9}$  Бк, а также Kr-83m, Kr-85m и Xe-1

Приложение 25 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

## Допустимые уровни радионуклидов цезия-137 и стронция-90

| №  | Группы продуктов питания                                                                                                                                                                                                                                                                                                         | Удельная активность цезия-137, Бк/кг(л) | Удельная активность<br>стронция-90, Бк/кг(л) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|
| 1  | 2                                                                                                                                                                                                                                                                                                                                | 3                                       | 4                                            |
| 1. | Мясо, мясные продукты и субпродукты                                                                                                                                                                                                                                                                                              | 200                                     | 50-                                          |
| 2. | Оленина, мясо диких<br>животных                                                                                                                                                                                                                                                                                                  | 300                                     | 100                                          |
| 3. | Птица, в том числе полуфабрикаты, свежие, охлажденные, замороженные (все виды убойной, промысловой и дикой птицы) Субпродукты птицы охлажденные и замороженные. В том числе: колбасные изделия, копчености, кулинарные изделия из мяса птицы; консервы из мяса птицы и мясо растительные; продукты из птицы сублимационной сушки |                                         | 80                                           |
| 4. | Рыба и рыбные продукты в том числе: мясо морских млекопитающих , рыба маринованная, рыбная продукции, икра, молоки, аналоги икры, печень рыб Консервы, пресервы рыбные                                                                                                                                                           |                                         | 100                                          |
| 5. | Рыба сушеная и вяленая копченая, соленая, рыбная кулинария                                                                                                                                                                                                                                                                       | 260                                     | 200                                          |
| 6. | Моллюски ,ракообразные , земноводные, водоросли и травы морские                                                                                                                                                                                                                                                                  |                                         | 100                                          |
|    | Яйца и продукты их переработки Яичный порошок (в пересчете на исходный продукт с                                                                                                                                                                                                                                                 |                                         |                                              |

| 7.  | учетом содержания сухих веществ в нем и конечном продукте)                                                                                                      | 80                               | 50                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| 8.  | Молоко-сырье, сливки - сырье, молоко пастеризованное, стерилизованное и топленое, сметана, кисломолочные напитки, йогурт, втом числе творог и изделия творожные | 100                              | 25                              |
| 9.  | Молоко сгущенное и концентрированное, консервы молочные                                                                                                         | 300                              | 100                             |
| 10. | Продукты молочные сухие: молоко, сливки , смеси для мороженого                                                                                                  | 500                              | 200                             |
| 11. | Сыры (твердые, плавленые, мягкие, рассольные, брынза)                                                                                                           | 50                               | 100                             |
| 12. | Овощи корнеплоды с в е ж и е и свежезамороженные, зелень картофель овощи, бахчевые фрукты, ягоды, виноград грибы ягоды дикорастущие                             | 120<br>120<br>40<br>500<br>160   | 40<br>40<br>30<br>50<br>60      |
| 13. | Сухие овощи: картофель овощи, бахчевые фрукты, ягоды, виноград грибы дикорастущие ягоды                                                                         | 600<br>600<br>200<br>2500<br>800 | 200<br>200<br>150<br>250<br>300 |
| 14. | Зерно продовольственное, в том числе пшеница, рожь, трикале, овес, ячмень, просо, гречиха, рис, кукуруза, сорго                                                 | 70                               | 40                              |
| 15. | Семена зернобобовых, горох, фасоль, маш, чипа, чечевица, нут                                                                                                    | 50                               | 60                              |
| 16. | Caxap                                                                                                                                                           | 140                              | 100                             |
| 17. | Сахаристые кондитерские изделия: карамель, глазурь. и неглазурь. конфеты,                                                                                       |                                  | 100                             |

|     | помадные, ирис, халва, пастила, зефир, мармелад и т.д.                                                                                         | 160        |          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 18. | Шоколад и изделия из него                                                                                                                      | 140        | 100      |
| 19. | Какао-бобы и какао<br>продукты                                                                                                                 | 100        | 80       |
| 20. | Мед                                                                                                                                            | 100        | 80       |
| 21. | Специи и пряности столовые (сухие)                                                                                                             | 200        | 100      |
| 22. | Орехи                                                                                                                                          | 200        | 100      |
| 23. | Семена масленичных культур (подсолнечника, сои, хлопчатника, кукурузы, льна, горчицы, рапса, арахиса)                                          | 70         | 90       |
| 24. | Масло растительное (все виды) Продукты переработки растительных масел и животных жиров (Маргарин, кулинарный жир, кондитерские жиры, майонезы) | 60         | 80       |
| 25. | Жир сырец говяжий, свиной, бараний и др. Шпик свиной охлажденный, замороженный, соленый, конченый и т.д. Жиры животные топленые                | 100<br>100 | 50<br>50 |
| 26. | Масло коровье                                                                                                                                  | 200        | 60       |
| 27. | Жировые продукты на основе сочетания животных(включая молочный жир) и растительных жиров                                                       | 100        | 80       |
| 28. | Рыбий жир в качестве лечебно-<br>профилактического средства                                                                                    | 60         | 80       |
| 29. | Напитки безалкогольные (сокосодержащие, искусственно-минерализ ованные, изготавливаемые из концентратов)                                       | 70         | 100      |
|     |                                                                                                                                                |            |          |

| 30. | Напитки брожения (<br>изготавливаемые из<br>концентратов)                                                                                                                    | 70                   | 100                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| 31. | Пиво, вино, водка и другие спиртные напитки                                                                                                                                  | 70                   | 100                  |
| 32. | Хлеб и хлебобулочные изделия бараночки сухарные изделия хлебные палочки, мучные кондитерские изделия                                                                         | 40                   | 20                   |
| 33. | Мука, крупы, толокно, хлопья, пищевые злаки, макаронные изделия,                                                                                                             | 60                   | -30                  |
| 34. | Желатин                                                                                                                                                                      | 160                  | 80                   |
| 35. | Крахмал , патока и продукты их переработки                                                                                                                                   | 400                  | 100                  |
| 36. | Дрожжи пищевые, биомасса одноклеточных растений, бактериологические препараты и дрожжи сухие                                                                                 | 100                  | 80                   |
| 37. | Бульоны сухие пищевые                                                                                                                                                        | 160                  | 50                   |
| 38. | Ксилит, сорбит, маннит и др. сахароспирты                                                                                                                                    | 200                  | 100                  |
| 39. | Соль поваренная и лечебно-профилактическ ая                                                                                                                                  | 300                  | 100                  |
| 40. | Концентраты пищевые                                                                                                                                                          | по основ. компоненту | по основ. компоненту |
| 41. | БАД-источники преимущественно пищевых волокон( пектины, отруби, растительная клетчатка, микрокристаллическая целлюлоза)                                                      | 200                  | 100                  |
| 42. | БАД на растительной основе: сухие, жидкие                                                                                                                                    | 200                  | 100                  |
| 43. | Специализированные продукты детского питания в готовом для употребления виде <sup>(1)</sup> Продукты для питания детей раннего возраста Продукты прикорма на зерновой основе | 40                   | 25                   |
| 44. | Продукты прикорма на<br>плодоовощной основе                                                                                                                                  | 60                   | 25                   |

| 45. | Продукты прикорма на мясной основе | 70  | 30 |
|-----|------------------------------------|-----|----|
| 46. | Продукты прикорма на рыбной основе | 100 | 60 |

(1) – для сублимированных продуктов удельная активность определяется в восстановленном продукте.

Приложение 26 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

Минимально значимая удельная активность радионуклидов (МЗУА), минимальная значимая активность (МЗА) радионуклидов для открытых и закрытых радионуклидных источников

(уровни изъятия)

| нуклид | МЗУА, Бк/г | МЗА, Бк |
|--------|------------|---------|
| 1      | 2          | 3       |
| H-3    | 1 E+06     | 1 E+09  |
| Be-7   | 1 E+03     | 1 E+07  |
| C-11   | 1 E+00     | 1 E+06  |
| C-14   | 1 E+04     | 1 E+07  |
| N-13   | 1 E+02     | 1 E+09  |
| N-19   | 1 E+02     | 1 E+09  |
| O-15   | 1 E+02     | 1 E+09  |
| F-18   | 1 E+00     | 1 E+06  |
| Na-22  | 1 E+00     | 1 E+06  |
| Na-24  | 1 E+00     | 1 E+05  |
| Mg-28  | 1 E+00     | 1 E+05  |
| A1-26  | 1 E+00     | 1 E+05  |
| Si-31  | 1 E+03     | 1 E+06  |
| Si-32  | 1 E+03     | 1 E+06  |
| P-32   | 1 E+03     | 1 E+05  |
| P-33   | 1 E+05     | 1 E+08  |
| S-35   | 1 E+05     | 1 E+08  |
| C1-36  | 1 E+04     | 1 E+06  |
| C1-38  | 1 E+00     | 1 E+05  |
| C1-39  | 1 E+00     | 1 E+05  |
| Ar-37  | 1 E+06     | 1 E+08  |
| Ar-39  | 1 E+07     | 1 E+04  |
| Ar-41  | 1 E+02     | 1 E+09  |
| K-40   | 1 E+02     | 1 E+06  |

| K-42   | 1 E+02 | 1 E+06 |
|--------|--------|--------|
| K-43   | 1 E+00 | 1 E+05 |
| K-44   | 1 E+00 | 1 E+05 |
| K-45   | 1 E+00 | 1 E+06 |
| Ca-41  | 1 E+05 | 1 E+07 |
| Ca-45  | 1 E+04 | 1 E+07 |
| Ca-47  | 1 E+00 | 1 E+06 |
| Sc-43  | 1 E+00 | 1 E+06 |
| Sc-44  | 1 E+00 | 1 E+05 |
| Sc-45  | 1 E+02 | 1 E+07 |
| Sc-46  | 1 E+00 | 1 E+06 |
| Sc-47  | 1 E+02 | 1 E+06 |
| Sc-48  | 1 E+00 | 1 E+05 |
| Sc-49  | 1 E+03 | 1 E+05 |
| Ti-44  | 1 E+00 | 1 E+05 |
| Ti-45  | 1 E+00 | 1 E+06 |
| V-47   | 1 E+00 | 1 E+05 |
| V-48   | 1 E+00 | 1 E+05 |
| V-49   | 1 E+04 | 1 E+07 |
| Cr-48  | 1 E+02 | 1 E+06 |
| Cr-49  | 1 E+00 | 1 E+06 |
| Cr-51  | 1 E+03 | 1 E+07 |
| Mn-51  | 1 E+00 | 1 E+05 |
| Mn-52  | 1 E+00 | 1 E+05 |
| Mn-52m | 1 E+00 | 1 E+05 |
| Mn-53  | 1 E+04 | 1 E+09 |
| Mn-54  | 1 E+00 | 1 E+06 |
| Mn-56  | 1 E+00 | 1 E+05 |
| Fe-52  | 1 E+00 | 1 E+06 |
| Fe-55  | 1 E+04 | 1 E+06 |
| Fe-59  | 1 E+00 | 1 E+06 |
| Fe-60  | 1 E+02 | 1 E+05 |
| Co-55  | 1 E+00 | 1 E+06 |
| Co-56  | 1 E+00 | 1 E+05 |
| Co-57  | 1 E+02 | 1 E+06 |
| Co-58  | 1 E+00 | 1 E+06 |
| Co-58m | 1 E+04 | 1 E+07 |
| Co-60  | 1 E+00 | 1 E+05 |
| Co-60m | 1 E+03 | 1 E+06 |
| Co-61  | 1 E+02 | 1 E+06 |
| Co-62m | 1 E+00 | 1 E+05 |
|        |        |        |

| Ni-56  | 1 E+00 | 1 E+06 |
|--------|--------|--------|
| Ni-57  | 1 E+00 | 1 E+06 |
| Ni-59  | 1 E+04 | 1 E+08 |
| Ni-63  | 1 E+05 | 1 E+08 |
| Ni-65  | 1 E+00 | 1 E+06 |
| Ni-66  | 1 E+04 | 1 E+07 |
| Cu-60  | 1 E+00 | 1 E+05 |
| Cu-61  | 1 E+00 | 1 E+06 |
| Cu-64  | 1 E+02 | 1 E+06 |
| Cu-67  | 1 E+02 | 1 E+06 |
| Zn-62  | 1 E+02 | 1 E+06 |
| Zn-63  | 1 E+00 | 1 E+05 |
| Zn-65  | 1 E+00 | 1 E+06 |
| Zn-69  | 1 E+04 | 1 E+06 |
| Zn-69m | 1 E+02 | 1 E+06 |
| Zn-71m | 1 E+00 | 1 E+06 |
| Zn-72  | 1 E+02 | 1 E+06 |
| Ga-65  | 1 E+00 | 1 E+05 |
| Ga-66  | 1 E+00 | 1 E+05 |
| Ga-67  | 1 E+02 | 1 E+06 |
| Ga-68  | 1 E+00 | 1 E+05 |
| Ga-70  | 1 E+02 | 1 E+06 |
| Ga-72  | 1 E+00 | 1 E+05 |
| Ga-73  | 1 E+02 | 1 E+06 |
| Ge-66  | 1 E+01 | 1 E+05 |
| Ge-67  | 1 E+01 | 1 E+05 |
| Ge-68* | 1 E+01 | 1 E+05 |
| Ge-69  | 1 E+01 | 1 E+06 |
| Ge-71  | 1 E+04 | 1 E+08 |
| Ge-75  | 1 E+03 | 1 E+06 |
| Ge-77  | 1 E+04 | 1 E+08 |
| Ge-78  | 1 E+02 | 1 E+06 |
| As-69  | 1 E+00 | 1 E+05 |
| As-70  | 1 E+00 | 1 E+05 |
| As-71  | 1 E+00 | 1 E+06 |
| As-72  | 1 E+00 | 1 E+05 |
| As-73  | 1 E+03 | 1 E+07 |
| As-74  | 1 E+00 | 1 E+06 |
| As-76  | 1 E+02 | 1 E+05 |
| As-77  | 1 E+03 | 1 E+06 |
| As-78  | 1 E+00 | 1 E+06 |
| Se-73  | 1 E+00 | 1 E+06 |

| Se-73m             | 1 E+02 | 1 E+06 |
|--------------------|--------|--------|
| Se-75              | 1 E+02 | 1 E+06 |
| Se-79              | 1 E+04 | 1 E+07 |
| Se-81              | 1 E+03 | 1 E+06 |
| Se-81m             | 1 E+07 | 1 E+07 |
| Se-83              | 1 E+00 | 1 E+05 |
| Br-74              | 1 E+00 | 1 E+05 |
| Br-74m             | 1 E+00 | 1 E+05 |
| Br-75              | 1 E+00 | 1 E+06 |
| Br-76              | 1 E+00 | 1 E+05 |
| Br-77              | 1 E+02 | 1 E+06 |
| Br-80              | 1 E+02 | 1 E+05 |
| Br-80m             | 1 E+03 | 1 E+07 |
| Br-82              | 1 E+00 | 1 E+06 |
| Br-83              | 1 E+03 | 1 E+06 |
| Br-84              | 1 E+00 | 1 E+05 |
| Kr-74              | 1 E+02 | 1 E+09 |
| Kr-76              | 1 E+02 | 1 E+09 |
| Kr-77              | 1 E+02 | 1 E+09 |
| Kr-79              | 1 E+03 | 1 E+05 |
| Kr-81              | 1 E+04 | 1 E+07 |
| Kr-83m             | 1 E+05 | 1 E+12 |
| Kr-85              | 1 E+05 | 1 E+04 |
| Kr-85m             | 1 E+03 | 1 E+10 |
| Kr-87              | 1 E+02 | 1 E+09 |
| Kr-88              | 1 E+02 | 1 E+09 |
| Rb-79              | 1 E+00 | 1 E+05 |
| Rb-81              | 1 E+00 | 1 E+06 |
| Rb-81m             | 1 E+03 | 1 E+07 |
| Rb-82m             | 1 E+00 | 1 E+06 |
| Rb-83 <sup>a</sup> | 1 E+02 | 1 E+06 |
| Rb-84              | 1 E+00 | 1 E+06 |
| Rb-86              | 1 E+02 | 1 E+05 |
| Sr-80              | 1 E+03 | 1 E+07 |
| Sr-81              | 1 E+00 | 1 E+05 |
| Sr-82 <sup>a</sup> | 1 E+00 | 1 E+05 |
| Sr-83              | 1 E+00 | 1 E+06 |
| Sr-85              | 1 E+02 | 1 E+06 |
| Sr-85m             | 1 E+02 | 1 E+07 |
| Sr-87m             | 1 E+02 | 1 E+06 |
| Sr-89              | 1 E+03 | 1 E+06 |
|                    |        |        |

| Sr-90*         | 1 E+02 | 1 E+04 |
|----------------|--------|--------|
| Sr-91          | 1 E+00 | 1 E+05 |
| Sr-92          | 1 E+00 | 1 E+06 |
| Y-86           | 1 E+00 | 1 E+05 |
| Y-86m          | 1 E+02 | 1 E+07 |
| Y-87*          | 1 E+00 | 1 E+06 |
| Y-88           | 1 E+00 | 1 E+06 |
| Y-90           | 1 E+03 | 1 E+05 |
| Y-90m          | 1 E+00 | 1 E+06 |
| Y-91           | 1 E+03 | 1 E+06 |
| Y-91m          | 1 E+02 | 1 E+06 |
| Y-92           | 1 E+02 | 1 E+05 |
| Y-93           | 1 E+02 | 1 E+05 |
| Y-94           | 1 E+00 | 1 E+05 |
| Y-95           | 1 E+00 | 1 E+05 |
| Zr-86          | 1 E+02 | 1 E+07 |
| Zr-88          | 1 E+02 | 1 E+06 |
| Zr-89          | 1 E+00 | 1 E+06 |
| Zr-93*         | 1 E+03 | 1 E+07 |
| Zr-95          | 1 E+00 | 1 E+06 |
| Zr-97*         | 1 E+00 | 1 E+05 |
| Nb-88          | 1 E+00 | 1 E+05 |
| Nb-89 (2,03 ч) | 1 E+00 | 1 E+05 |
| Nb-89 (1,01 ч) | 1 E+00 | 1 E+05 |
| Nb-90          | 1 E+00 | 1 E+05 |
| Nb-93m         | 1 E+04 | 1 E+07 |
| Nb-94          | 1 E+00 | 1 E+06 |
| Nb-95          | 1 E+00 | 1 E+06 |
| Nb-95m         | 1 E+02 | 1 E+07 |
| Nb-96          | 1 E+00 | 1 E+06 |
| Nb-97          | 1 E+00 | 1 E+06 |
| Nb-98          | 1 E+00 | 1 E+05 |
| Mo-90          | 1 E+00 | 1 E+06 |
| Mo-93          | 1 E+03 | 1 E+08 |
| Mo-93m         | 1 E+00 | 1 E+06 |
| Mo-99          | 1 E+02 | 1 E+06 |
| Mo-101         | 1 E+00 | 1 E+06 |
| Tc-93          | 1 E+00 | 1 E+06 |
| Tc-93m         | 1 E+00 | 1 E+06 |
| Tc-94          | 1 E+00 | 1 E+06 |
| Tc-94m         | 1 E+00 | 1 E+05 |
| Tc-94m         | 1 E+00 | 1 E+05 |

| Tc-95   | 1 E+00 | 1 E+06 |
|---------|--------|--------|
| Tc-95m  | 1 E+00 | 1 E+06 |
| Tc-96   | 1 E+00 | 1 E+06 |
| Tc-96m  | 1 E+03 | 1 E+07 |
| Tc-97   | 1 E+03 | 1 E+08 |
| Tc-97m  | 1 E+03 | 1 E+07 |
| Tc-98   | 1 E+00 | 1 E+06 |
| Tc-99   | 1 E+04 | 1 E+07 |
| Tc-99m  | 1 E+02 | 1 E+07 |
| Tc-101  | 1 E+02 | 1 E+06 |
| Tc-104  | 1 E+00 | 1 E+05 |
| Ru-94   | 1 E+02 | 1 E+06 |
| Ru-97   | 1 E+02 | 1 E+07 |
| Ru-103  | 1 E+02 | 1 E+06 |
| Ru-105  | 1 E+00 | 1 E+06 |
| Ru-106* | 1 E+02 | 1 E+05 |
| Rh-99   | 1 E+00 | 1 E+06 |
| Rh-99m  | 1 E+00 | 1 E+06 |
| Rh-100  | 1 E+00 | 1 E+06 |
| Rh-101  | 1 E+02 | 1 E+07 |
| Rh-101m | 1 E+02 | 1 E+07 |
| Rh-102  | 1 E+00 | 1 E+06 |
| Rh-102m | 1 E+02 | 1 E+06 |
| Rh-103m | 1 E+04 | 1 E+08 |
| Rh-105  | 1 E+02 | 1 E+07 |
| Rh-106m | 1 E+00 | 1 E+05 |
| Rh-107  | 1 E+02 | 1 E+06 |
| Pd-100  | 1 E+02 | 1 E+07 |
| Pd-101  | 1 E+02 | 1 E+06 |
| Pd-103  | 1 E+03 | 1 E+08 |
| Pd-107  | 1 E+05 | 1 E+08 |
| Pd-109  | 1 E+03 | 1 E+06 |
| Ag-102  | 1 E+00 | 1 E+05 |
| Ag-103  | 1 E+00 | 1 E+06 |
| Ag-104  | 1 E+00 | 1 E+06 |
| Ag-104m | 1 E+00 | 1 E+06 |
| Ag-105  | 1 E+02 | 1 E+06 |
| Ag-106  | 1 E+00 | 1 E+06 |
| Ag-106m | 1 E+00 | 1 E+06 |
| Ag-108m | 1 E+00 | 1 E+06 |
| Ag-110m | 1 E+00 | 1 E+06 |
| Ag-111  | 1 E+03 | 1 E+06 |

| 1 E+00 |                                                                                                                                                                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 00  | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+04 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+01 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+06 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+01 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+05 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+01 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                           |
| 1 E+01 | 1 E+05                                                                                                                                                                                                                                                                                                                                           |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                           |
|        | 1 E+04 1 E+03 1 E+03 1 E+02 1 E+03 1 E+01 1 E+01 1 E+01 1 E+01 1 E+01 1 E+01 1 E+02 1 E+02 1 E+02 1 E+03 1 E+06 1 E+01 1 E+01 1 E+01 1 E+02 1 E+02 1 E+02 1 E+03 1 E+02 1 E+02 1 E+03 1 E+001 1 E+01 1 E+02 1 E+02 1 E+02 1 E+02 1 E+02 1 E+03 1 E+02 1 E+03 1 E+03 1 E+03 1 E+03 1 E+03 1 E+05 1 E+03 1 E+03 1 E+01 1 E+01 1 E+01 1 E+01 1 E+01 |

| Sb-118m            | 1 E+01 | 1 E+06 |
|--------------------|--------|--------|
| Sb-119             | 1 E+03 | 1 E+07 |
| Sb-120 (15,89 мин) | 1 E+02 | 1 E+06 |
| Sb-120 (5,76 cyr)  | 1 E+01 | 1 E+06 |
| Sb-122             | 1 E+02 | 1 E+04 |
| Sb-124             | 1 E+00 | 1 E+06 |
| Sb-124m            | 1 E+02 | 1 E+06 |
| Sb-125             | 1 E+02 | 1 E+06 |
| Sb-126             | 1 E+01 | 1 E+05 |
| Sb-126m            | 1 E+01 | 1 E+05 |
| Sb-127             | 1 E+01 | 1 E+06 |
| Sb-128 (10,4 мин)  | 1 E+01 | 1 E+05 |
| Sb-128 (9,01 ч)    | 1 E+01 | 1 E+08 |
| Sb-129             | 1 E+01 | 1 E+06 |
| Sb-130             | 1 E+01 | 1 E+05 |
| Sb-131             | 1 E+01 | 1 E+06 |
| Te-116             | 1 E+02 | 1 E+07 |
| Te-121             | 1 E+01 | 1 E+06 |
| Te-121m            | 1 E+02 | 1 E+06 |
| Te-123             | 1 E+03 | 1 E+06 |
| Te-123m            | 1 E+02 | 1 E+07 |
| Te-125m            | 1 E+03 | 1 E+07 |
| Te-127             | 1 E+03 | 1 E+06 |
| Te-127m            | 1 E+03 | 1 E+07 |
| Te-129             | 1 E+02 | 1 E+06 |
| Te-129m            | 1 E+03 | 1 E+06 |
| Te-131             | 1 E+02 | 1 E+05 |
| Te-131m            | 1 E+00 | 1 E+06 |
| Te-132             | 1 E+02 | 1 E+07 |
| Te-133             | 1 E+00 | 1 E+05 |
| Te-133m            | 1 E+00 | 1 E+05 |
| Te-134             | 1 E+00 | 1 E+06 |
| I-120              | 1 E+01 | 1 E+08 |
| I-120m             | 1 E+01 | 1 E+05 |
| I-121              | 1 E+02 | 1 E+06 |
| I-123              | 1 E+02 | 1 E+07 |
| I-124              | 1 E+01 | 1 E+06 |
| I-125              | 1 E+03 | 1 E+06 |
| I-126              | 1 E+02 | 1 E+06 |
| I-128              | 1 E+02 | 1 E+05 |
| I-129              | 1 E+02 | 1 E+05 |
| I-130              | 1 E+00 | 1 E+06 |

| I-131   | 1 E+02 | 1 E+06 |
|---------|--------|--------|
| I-132   | 1 E+00 | 1 E+05 |
| I-132m  | 1 E+02 | 1 E+06 |
| I-133   | 1 E+01 | 1 E+06 |
| I-134   | 1 E+01 | 1 E+05 |
| I-135   | 1 E+01 | 1 E+06 |
| Xe-120  | 1 E+02 | 1 E+09 |
| Xe-121  | 1 E+02 | 1 E+09 |
| Xe-122* | 1 E+02 | 1 E+09 |
| Xe-123  | 1 E+02 | 1 E+09 |
| Xe-125  | 1 E+03 | 1 E+09 |
| Xe-127  | 1 E+03 | 1 E+05 |
| Xe-129m | 1 E+03 | 1 E+04 |
| Xe131m  | 1 E+04 | 1 E+04 |
| Xe-133  | 1 E+03 | 1 E+04 |
| Xe-133m | 1 E+03 | 1 E+04 |
| Xe-135  | 1 E+03 | 1 E+10 |
| Xe-135m | 1 E+02 | 1 E+09 |
| Xe-138  | 1 E+02 | 1 E+09 |
| Cs-125  | 1 E+01 | 1 E+04 |
| Cs-127  | 1 E+02 | 1 E+05 |
| Cs-129  | 1 E+02 | 1 E+05 |
| Cs-130  | 1 E+02 | 1 E+06 |
| Cs-131  | 1 E+03 | 1 E+06 |
| Cs-132  | 1 E+00 | 1 E+05 |
| Cs-134m | 1 E+03 | 1 E+05 |
| Cs-134  | 1 E+00 | 1 E+04 |
| Cs-135  | 1 E+04 | 1 E+07 |
| Cs-135m | 1 E+01 | 1 E+06 |
| Cs-136  | 1 E+00 | 1 E+05 |
| Cs-137* | 1 E+00 | 1 E+04 |
| Cs-138  | 1 E+00 | 1 E+04 |
| Ba-126  | 1 E+02 | 1 E+07 |
| Ba-128  | 1 E+02 | 1 E+07 |
| Ba-131  | 1 E+02 | 1 E+06 |
| Ba-131m | 1 E+02 | 1 E+07 |
| Ba-133  | 1 E+02 | 1 E+06 |
| Ba-133m | 1 E+02 | 1 E+06 |
| Ba-135m | 1 E+02 | 1 E+06 |
| Ba-137m | 1 E+01 | 1 E+06 |
| Ba-139  | 1 E+02 | 1 E+08 |
|         |        |        |

| Ba-140* | 1 E+00 | 1 E+05 |
|---------|--------|--------|
| Ba-140m | 1 E+01 | 1 E+05 |
| Ba-141  | 1 E+02 | 1 E+05 |
| Ba-142  | 1 E+02 | 1 E+06 |
| La-131  | 1 E+01 | 1 E+06 |
| La-132  | 1 E+01 | 1 E+06 |
| La-135  | 1 E+03 | 1 E+07 |
| La-137  | 1 E+03 | 1 E+07 |
| La-138  | 1 E+01 | 1 E+06 |
| La-140  | 1 E+00 | 1 E+05 |
| La-141  | 1 E+02 | 1 E+05 |
| La-142  | 1 E+01 | 1 E+08 |
| La-143  | 1 E+02 | 1 E+05 |
| Ce-134  | 1 E+03 | 1 E+07 |
| Ce-135  | 1 E+01 | 1 E+06 |
| Ce-137  | 1 E+03 | 1 E+07 |
| Ce-137m | 1 E+03 | 1 E+06 |
| Ce-139  | 1 E+02 | 1 E+06 |
| Ce-141  | 1 E+02 | 1 E+07 |
| Ce-143  | 1 E+02 | 1 E+06 |
| Ce-144* | 1 E+02 | 1 E+05 |
| Pr-136  | 1 E+01 | 1 E+08 |
| Pr-137  | 1 E+02 | 1 E+06 |
| Pr-138m | 1 E+01 | 1 E+06 |
| Pr-139  | 1 E+02 | 1 E+07 |
| Pr-142  | 1 E+02 | 1 E+05 |
| Pr-142m | 1 E+07 | 1 E+09 |
| Pr-143  | 1 E+04 | 1 E+06 |
| Pr-144  | 1 E+02 | 1 E+05 |
| Pr-145  | 1 E+03 | 1 E+05 |
| Pr-147  | 1 E+01 | 1 E+05 |
| Nd-136  | 1 E+02 | 1 E+06 |
| Nd-138  | 1 E+03 | 1 E+07 |
| Nd-139  | 1 E+02 | 1 E+06 |
| Nd-139m | 1 E+01 | 1 E+06 |
| Nd-141  | 1 E+02 | 1 E+07 |
| Nd-147  | 1 E+02 | 1 E+06 |
| Nd-149  | 1 E+02 | 1 E+06 |
| Nd-151  | 1 E+01 | 1 E+05 |
| Pm-141  | 1 E+01 | 1 E+05 |
| Pm-143  | 1 E+02 | 1 E+06 |
| Pm-144  | 1 E+01 | 1 E+06 |

| Pm-145           | 1 E+03 | 1 E+07 |
|------------------|--------|--------|
| Pm-146           | 1 E+01 | 1 E+06 |
| Pm-147           | 1 E+04 | 1 E+07 |
| Pm-148           | 1 E+01 | 1 E+08 |
| Pm-148m          | 1 E+01 | 1 E+06 |
| Pm-149           | 1 E+03 | 1 E+06 |
| Pm-150           | 1 E+01 | 1 E+05 |
| Pm-151           | 1 E+02 | 1 E+06 |
| Sm-141           | 1 E+01 | 1 E+05 |
| Sm-141m          | 1 E+01 | 1 E+06 |
| Sm-142           | 1 E+02 | 1 E+07 |
| Sm-145           | 1 E+02 | 1 E+07 |
| Sm-146           | 1 E+01 | 1 E+05 |
| Sm-147           | 1 E+01 | 1 E+04 |
| Sm-151           | 1 E+04 | 1 E+08 |
| Sm-153           | 1 E+02 | 1 E+06 |
| Sm-155           | 1 E+02 | 1 E+06 |
| Sm-156           | 1 E+02 | 1 E+06 |
| Eu-145           | 1 E+01 | 1 E+06 |
| Eu-146           | 1 E+01 | 1 E+06 |
| Eu-147           | 1 E+02 | 1 E+06 |
| Eu-148           | 1 E+01 | 1 E+06 |
| Eu-149           | 1 E+02 | 1 E+07 |
| Еи-150 (12,6 ч)  | 1 E+03 | 1 E+06 |
| Еи-150 (34,2 г.) | 1 E+01 | 1 E+06 |
| Eu-152           | 1 E+00 | 1 E+06 |
| Eu-152m          | 1 E+02 | 1 E+06 |
| Eu-154           | 1 E+00 | 1 E+06 |
| Eu-155           | 1 E+02 | 1 E+07 |
| Eu-156           | 1 E+01 | 1 E+06 |
| Eu-157           | 1 E+02 | 1 E+06 |
| Eu-158           | 1 E+01 | 1 E+05 |
| Gd-145           | 1 E+01 | 1 E+05 |
| Gd-146*          | 1 E+01 | 1 E+06 |
| Gd-147           | 1 E+01 | 1 E+06 |
| Gd-148           | 1 E+01 | 1 E+04 |
| Gd-149           | 1 E+02 | 1 E+06 |
| Gd-151           | 1 E+02 | 1 E+07 |
| Gd-152           | 1 E+01 | 1 E+04 |
| Gd-153           | 1 E+02 | 1 E+07 |
| Gd-159           | 1 E+03 | 1 E+06 |
|                  |        |        |

| Tb-147           | 1 E+01 | 1 E+06 |
|------------------|--------|--------|
| Tb-149           | 1 E+01 | 1 E+06 |
| Tb-150           | 1 E+01 | 1 E+06 |
| Tb-151           | 1 E+01 | 1 E+06 |
| Tb-153           | 1 E+02 | 1 E+07 |
| Tb-154           | 1 E+01 | 1 E+06 |
| Tb-155           | 1 E+02 | 1 E+07 |
| Tb-156           | 1 E+01 | 1 E+06 |
| Тb-156m (24,4 ч) | 1 E+03 | 1 E+07 |
| Тb-156m (5 ч)    | 1 E+04 | 1 E+07 |
| Tb-157           | 1 E+04 | 1 E+07 |
| Tb-158           | 1 E+01 | 1 E+06 |
| Tb-160           | 1 E+00 | 1 E+06 |
| Tb-161           | 1 E+03 | 1 E+06 |
| Dy-155           | 1 E+01 | 1 E+06 |
| Dy-157           | 1 E+02 | 1 E+06 |
| Dy-159           | 1 E+03 | 1 E+07 |
| Dy-165           | 1 E+03 | 1 E+06 |
| Dy-166           | 1 E+03 | 1 E+06 |
| Ho-155           | 1 E+02 | 1 E+06 |
| Ho-157           | 1 E+02 | 1 E+06 |
| Ho-159           | 1 E+02 | 1 E+06 |
| Ho-161           | 1 E+02 | 1 E+07 |
| Ho-162           | 1 E+02 | 1 E+07 |
| Ho-162m          | 1 E+01 | 1 E+06 |
| Ho-164           | 1 E+03 | 1 E+06 |
| Ho-164m          | 1 E+03 | 1 E+07 |
| Но-166           | 1 E+03 | 1 E+05 |
| Ho-166m          | 1 E+01 | 1 E+06 |
| Ho-167           | 1 E+02 | 1 E+06 |
| Er-161           | 1 E+01 | 1 E+06 |
| Er-165           | 1 E+03 | 1 E+07 |
| Er-169           | 1 E+04 | 1 E+07 |
| Er-171           | 1 E+02 | 1 E+06 |
| Er-172           | 1 E+02 | 1 E+06 |
| Tm-162           | 1 E+01 | 1 E+06 |
| Tm-166           | 1 E+01 | 1 E+06 |
| Tm-167           | 1 E+02 | 1 E+06 |
| Tm-170           | 1 E+03 | 1 E+06 |
| Tm-171           | 1 E+04 | 1 E+08 |
| Tm-172           | 1 E+02 | 1 E+06 |
| Tm-173           | 1 E+02 | 1 E+06 |

| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+03 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+03 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+05                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+05                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+03 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+05                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+00 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+01 | 1 E+06                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 E+02 | 1 E+07                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 1 E+02 1 E+02 1 E+02 1 E+02 1 E+03 1 E+03 1 E+01 1 E+01 1 E+01 1 E+01 1 E+01 1 E+02 1 E+02 1 E+02 1 E+03 1 E+03 1 E+01 1 E+03 1 E+01 1 E+03 1 E+01 1 E+02 1 E+01 1 E+01 1 E+02 1 E+01 1 E+02 1 E+01 1 E+02 1 E+01 |

| Ta-178          | 1 E+01 | 1 E+06 |
|-----------------|--------|--------|
| Ta-179          | 1 E+03 | 1 E+07 |
| Ta-180          | 1 E+01 | 1 E+06 |
| Ta-182          | 1 E+00 | 1 E+04 |
| Ta-182m         | 1 E+02 | 1 E+06 |
| Ta-183          | 1 E+02 | 1 E+06 |
| Ta-184          | 1 E+01 | 1 E+06 |
| Ta-185          | 1 E+02 | 1 E+08 |
| Ta-186          | 1 E+01 | 1 E+08 |
| W-176           | 1 E+02 | 1 E+06 |
| W-177           | 1 E+01 | 1 E+06 |
| W-178*          | 1 E+01 | 1 E+06 |
| W-179           | 1 E+02 | 1 E+07 |
| W-181           | 1 E+03 | 1 E+07 |
| W-185           | 1 E+04 | 1 E+07 |
| W-187           | 1 E+02 | 1 E+06 |
| W-188*          | 1 E+02 | 1 E+05 |
| Re-177          | 1 E+01 | 1 E+06 |
| Re-178          | 1 E+01 | 1 E+06 |
| Re-181          | 1 E+01 | 1 E+06 |
| Re-182 (12,7 ч) | 1 E+01 | 1 E+06 |
| Re-182 (64 ч)   | 1 E+01 | 1 E+06 |
| Re-184          | 1 E+01 | 1 E+06 |
| Re-184m         | 1 E+02 | 1 E+06 |
| Re-186          | 1 E+03 | 1 E+06 |
| Re-186m         | 1 E+03 | 1 E+07 |
| Re-187          | 1 E+06 | 1 E+09 |
| Re-188          | 1 E+02 | 1 E+05 |
| Re-188m         | 1 E+02 | 1 E+07 |
| Re-189*         | 1 E+02 | 1 E+06 |
| Os-180          | 1 E+02 | 1 E+07 |
| Os-181          | 1 E+01 | 1 E+06 |
| Os-182          | 1 E+02 | 1 E+06 |
| Os-185          | 1 E+00 | 1 E+06 |
| Os-189m         | 1 E+04 | 1 E+07 |
| Os-191          | 1 E+02 | 1 E+07 |
| Os-191m         | 1 E+03 | 1 E+07 |
| Os-193          | 1 E+02 | 1 E+06 |
| Os-194*         | 1 E+02 | 1 E+05 |
| Ir-182          | 1 E+01 | 1 E+05 |
| Ir-184          | 1 E+01 | 1 E+06 |
|                 |        |        |

| Ir-185                      | 1 E+01 | 1 E+06 |
|-----------------------------|--------|--------|
| Ir-186 (15,8 ч)             | 1 E+01 | 1 E+06 |
| Ir-186 (1 <sub>5</sub> 75ч) | 1 E+01 | 1 E+06 |
| Ir-187                      | 1 E+02 | 1 E+06 |
| Ir-188                      | 1 E+01 | 1 E+06 |
| Ir-189*                     | 1 E+02 | 1 E+07 |
| Ir-190                      | 1 E+00 | 1 E+06 |
| Ir-190m (1,2ч)              | 1 E+04 | 1 E+07 |
| Ir-190m (3,1ч)              | 1 E+01 | 1 E+06 |
| Ir-192                      | 1 E+00 | 1 E+04 |
| Ir-192m                     | 1 E+02 | 1 E+07 |
| Ir-193m                     | 1 E+04 | 1 E+07 |
| Ir-194                      | 1 E+02 | 1 E+05 |
| Ir-194m                     | 1 E+01 | 1 E+06 |
| Ir-195                      | 1 E+02 | 1 E+06 |
| Ir-195m                     | 1 E+02 | 1 E+06 |
| Pt-186                      | 1 E+01 | 1 E+06 |
| Pt-188*                     | 1 E+01 | 1 E+06 |
| Pt-189                      | 1 E+02 | 1 E+06 |
| Pt-191                      | 1 E+02 | 1 E+06 |
| Pt-193                      | 1 E+04 | 1 E+07 |
| Pt-193m                     | 1 E+03 | 1 E+07 |
| Pt-195m                     | 1 E+02 | 1 E+06 |
| Pt-197                      | 1 E+03 | 1 E+06 |
| Pt-197m                     | 1 E+02 | 1 E+06 |
| Pt-199                      | 1 E+02 | 1 E+06 |
| Pt-200                      | 1 E+02 | 1 E+06 |
| Au-193                      | 1 E+02 | 1 E+07 |
| Au-194                      | 1 E+01 | 1 E+06 |
| Au-195                      | 1 E+02 | 1 E+07 |
| Au-198                      | 1 E+02 | 1 E+06 |
| Au-198m                     | 1 E+01 | 1 E+06 |
| Au-199                      | 1 E+02 | 1 E+06 |
| Au-200                      | 1 E+02 | 1 E+05 |
| Au-200m                     | 1 E+01 | 1 E+06 |
| Au-201                      | 1 E+02 | 1 E+06 |
| Hg-193                      | 1 E+02 | 1 E+06 |
| Hg-193m                     | 1 E+01 | 1 E+06 |
| Hg-194*                     | 1 E+01 | 1 E+06 |
| Hg-195                      | 1 E+02 | 1 E+06 |
| Hg-195m*                    | 1 E+02 | 1 E+06 |

| Hg-197   | 1 E+02 | 1 E+07 |
|----------|--------|--------|
| Hg-197m  | 1 E+02 | 1 E+06 |
| Hg-199m  | 1 E+02 | 1 E+06 |
| Hg-203   | 1 E+02 | 1 E+05 |
| Tl-194   | 1 E+01 | 1 E+06 |
| Tl-194m  | 1 E+01 | 1 E+06 |
| Tl-195   | 1 E+01 | 1 E+06 |
| Tl-197   | 1 E+02 | 1 E+06 |
| Tl-198   | 1 E+01 | 1 E+06 |
| Tl-198m  | 1 E+01 | 1 E+06 |
| Tl-199   | 1 E+02 | 1 E+06 |
| T1-200   | 1 E+00 | 1 E+06 |
| Tl-201   | 1 E+02 | 1 E+06 |
| T1-202   | 1 E+02 | 1 E+06 |
| T1-204   | 1 E+04 | 1 E+04 |
| Pb-195m  | 1 E+01 | 1 E+06 |
| Pb-198   | 1 E+02 | 1 E+06 |
| Pb-199   | 1 E+01 | 1 E+06 |
| Pb-200   | 1 E+02 | 1 E+06 |
| Pb-201   | 1 E+01 | 1 E+06 |
| Pb-202   | 1 E+03 | 1 E+06 |
| Pb-202rn | 1 E+01 | 1 E+06 |
| Pb-203   | 1 E+02 | 1 E+06 |
| Pb-205   | 1 E+04 | 1 E+07 |
| Pb-209   | 1 E+05 | 1 E+06 |
| Pb-210*  | 1 E+00 | 1 E+04 |
| Pb-211   | 1 E+02 | 1 E+06 |
| Pb-212*  | 1 E+00 | 1 E+05 |
| Pb-214   | 1 E+02 | 1 E+06 |
| Bi-200   | 1 E+01 | 1 E+06 |
| Bi-201   | 1 E+01 | 1 E+06 |
| Bi-202   | 1 E+01 | 1 E+06 |
| Bi-203   | 1 E+01 | 1 E+06 |
| Bi-205   | 1 E+01 | 1 E+06 |
| Bi-206   | 1 E+00 | 1 E+05 |
| Bi-207   | 1 E+00 | 1 E+06 |
| Bi-210   | 1 E+03 | 1 E+06 |
| Bi-210m* | 1 E+01 | 1 E+05 |
| Bi-212   | 1 E+00 | 1 E+05 |
| Bi-213   | 1 E+02 | 1 E+06 |
| Bi-214   | 1 E+01 | 1 E+05 |
| Po-203   | 1 E+00 | 1 E+06 |

| Po-205       | 1 E+00 | 1 E+06 |
|--------------|--------|--------|
| Po-206       | 1 E+01 | 1 E+06 |
| Po-207       | 1 E+00 | 1 E+06 |
| Po-208       | 1 E+01 | 1 E+04 |
| Po-209       | 1 E+01 | 1 E+04 |
| Po-210       | 1 E+00 | 1 E+04 |
| At-207       | 1 E+01 | 1 E+06 |
| At-211       | 1 E+03 | 1 E+07 |
| Rn-220*      | 1 E+04 | 1 E+07 |
| Rn-222*      | 1 E+00 | 1 E+08 |
| Ra-223*      | 1 E+02 | 1 E+05 |
| Ra-224*      | 1 E+00 | 1 E+05 |
| Ra-225       | 1 E+02 | 1 E+05 |
| Ra-226*      | 1 E+00 | 1 E+04 |
| Ra-227       | 1 E+02 | 1 E+06 |
| Ra-228*      | 1 E+00 | 1 E+05 |
| Ac-224       | 1 E+02 | 1 E+06 |
| Ac-225*      | 1 E+01 | 1 E+04 |
| Ac-226       | 1 E+02 | 1 E+05 |
| Ac-227*      | 1 E+01 | 1 E+03 |
| Ac-228       | 1 E+00 | 1 E+06 |
| Th-226*      | 1 E+03 | 1 E+07 |
| Th-227       | 1 E+00 | 1 E+04 |
| Th-228*      | 1 E+00 | 1 E+04 |
| Th-229*      | 1 E+00 | 1 E+03 |
| Th-230       | 1 E+00 | 1 E+04 |
| Th-231       | 1 E+03 | 1 E+07 |
| Th-232       | 1 E+01 | 1 E+04 |
| Th-природный | 1 E+00 | 1 E+03 |
| Th-234*      | 1 E+03 | 1 E+05 |
| Pa-227       | 1 E+01 | 1 E+06 |
| Pa-228       | 1 E+01 | 1 E+06 |
| Pa-230       | 1 E+00 | 1 E+06 |
| Pa-231       | 1 E+00 | 1 E+03 |
| Pa-232       | 1 E+01 | 1 E+06 |
| Pa-233       | 1 E+02 | 1 E+07 |
| Pa-234       | 1 E+01 | 1 E+06 |
| U-230*       | 1 E+00 | 1 E+05 |
| U-231        | 1 E+02 | 1 E+07 |
| U-232*       | 1 E+00 | 1 E+03 |
| U-233        | 1 E+00 | 1 E+04 |
|              |        |        |

| U-234                             | 1 E+00 | 1 E+04 |
|-----------------------------------|--------|--------|
| U-235*                            | 1 E+00 | 1 E+04 |
| U-236                             | 1 E+00 | 1 E+04 |
| U-237                             | 1 E+02 | 1 E+06 |
| U-238                             | 1 E+00 | 1 E+04 |
| U-природный                       | 1 E+00 | 1 E+03 |
| U-239                             | 1 E+02 | 1 E+06 |
| U-240                             | 1 E+03 | 1 E+07 |
| U-240*                            | 1 E+00 | 1 E+06 |
| Np-232                            | 1 E+01 | 1 E+06 |
| Np-233                            | 1 E+02 | 1 E+07 |
| Np-234                            | 1 E+01 | 1 E+06 |
| Np-235                            | 1 E+03 | 1 E+07 |
| Np-236 (22,5 ч)                   | 1 E+03 | 1 E+07 |
| Np-236 (1,15x10 <sup>5лет</sup> ) | 1 E+02 | 1 E+08 |
| Np-237*                           | 1 E+00 | 1 E+03 |
| Np-238                            | 1 E+02 | 1 E+06 |
| Np-239                            | 1 E+02 | 1 E+07 |
| Np-240                            | 1 E+00 | 1 E+06 |
| Pu-234                            | 1 E+02 | 1 E+07 |
| Pu-235                            | 1 E+02 | 1 E+07 |
| Pu-236                            | 1 E+00 | 1 E+04 |
| Pu-237                            | 1 E+03 | 1 E+07 |
| Pu-238                            | 1 E+00 | 1 E+04 |
| Pu-239                            | 1 E+00 | 1 E+04 |
| Pu-240                            | 1 E+00 | 1 E+03 |
| Pu-241                            | 1 E+02 | 1 E+05 |
| Pu-242                            | 1 E+00 | 1 E+04 |
| Pu-243                            | 1 E+03 | 1 E+07 |
| Pu-244                            | 1 E+00 | 1 E+04 |
| Pu-245                            | 1 E+02 | 1 E+06 |
| Pu-246                            | 1 E+02 | 1 E+06 |
| Am-237                            | 1 E+02 | 1 E+06 |
| Am-238                            | 1 E+01 | 1 E+06 |
| Am-239                            | 1 E+02 | 1 E+06 |
| Am-240                            | 1 E+01 | 1 E+06 |
| Am-241                            | 1 E+00 | 1 E+04 |
| Am-242                            | 1 E+03 | 1 E+06 |
| Am-242m*                          | 1 E+00 | 1 E+04 |
| Am-243                            | 1 E+00 | 1 E+03 |
| Am-244                            | 1 E+01 | 1 E+06 |
|                                   |        |        |

| Am-244m | 1 E+04 | 1 E+07 |
|---------|--------|--------|
| Am-245  | 1 E+03 | 1 E+06 |
| Am-246  | 1 E+01 | 1 E+05 |
| Am-246m | 1 E+01 | 1 E+06 |
| Cm-238  | 1 E+02 | 1 E+07 |
| Cm-240  | 1 E+02 | 1 E+05 |
| Cm-241  | 1 E+02 | 1 E+06 |
| Cm-242  | 1 E+02 | 1 E+05 |
| Cm-243  | 1 E+00 | 1 E+04 |
| Cm-244  | 1 E+00 | 1 E+04 |
| Cm-245  | 1 E+00 | 1 E+03 |
| Cm-246  | 1 E+00 | 1 E+03 |
| Cm-247  | 1 E+00 | 1 E+04 |
| Cm-248  | 1 E+00 | 1 E+03 |
| Cm-249  | 1 E+03 | 1 E+06 |
| Cm-250  | 1 E+01 | 1 E+03 |
| Bk-245  | 1 E+02 | 1 E+06 |
| Bk-246  | 1 E+01 | 1 E+06 |
| Bk-247  | 1 E+00 | 1 E+04 |
| Bk-249  | 1 E+03 | 1 E+06 |
| Bk-250  | 1 E+01 | 1 E+06 |
| Cf-244  | 1 E+04 | 1 E+07 |
| Cf-246  | 1 E+03 | 1 E+06 |
| Cf-248  | 1 E+00 | 1 E+04 |
| Cf-249  | 1 E+00 | 1 E+03 |
| Cf-250  | 1 E+00 | 1 E+04 |
| Cf-251  | 1 E+00 | 1 E+03 |
| Cf-252  | 1 E+00 | 1 E+04 |
| Cf-253  | 1 E+02 | 1 E+05 |
| Cf-254  | 1 E+00 | 1 E+03 |
| Es-250  | 1 E+02 | 1 E+06 |
| Es-251  | 1 E+02 | 1 E+07 |
| Es-253  | 1 E+02 | 1 E+05 |
| Es-254  | 1 E+00 | 1 E+04 |
| Es-254m | 1 E+02 | 1 E+06 |
| Fm-252  | 1 E+03 | 1 E+06 |
| Fm-253  | 1 E+02 | 1 E+06 |
| Fm-254  | 1 E+04 | 1 E+07 |
| Fm-255  | 1 E+03 | 1 E+06 |
| Fm-257  | 1 E+01 | 1 E+05 |

Категории опасности закрытых радионуклидных источников в зависимости от отношения  $A/D_{\rm oc}$ 

Таблица 1

| Категория опасности закрытых радионуклидных источников, выбранная на основе отношения A/D <sub>ос</sub> | Интервалы A/D <sub>ос</sub> |
|---------------------------------------------------------------------------------------------------------|-----------------------------|
| 1                                                                                                       | $A/D_{oc} > 1000$           |
| 2                                                                                                       | $1000 \ge A/D_{oc} > 10$    |
| 3                                                                                                       | $10 \ge A/D_{oc} > 1$       |
| 4                                                                                                       | $1 \ge A/D_{oc} > 0.01$     |
| 5                                                                                                       | $0.01 \ge A/D_{oc} > M3A$   |

где A — текущая активность радиоактивного источника,  $D_{oc}$  - пороговая активность, соответствующие опасному радионуклидному источнику, приведенная таблице 2.

Пороговые значения активности для определения категории опасности для закрытых источников ( $\mathrm{D}_{\mathrm{oc}}$ )

Таблица 2

| Радионуклид | D <sub>oc</sub> | $D_{oc}$ |  |  |
|-------------|-----------------|----------|--|--|
| тадионуклид | Бк              | Ки       |  |  |
| 1           | 2               | 3        |  |  |
| Ac-225      | 9,0E+10         | 2,4E+00  |  |  |
| Ac-227      | 4,0E+10         | 1,1E+00  |  |  |
| Ac-228      | 3,0E+10         | 8,1E-01  |  |  |
| Ag-105      | 1,0E+11         | 2,7E+00  |  |  |
| Ag-108m     | 4,0E+10         | 1,1E+00  |  |  |
| Ag-110m     | 2,0E+10         | 5,4E-01  |  |  |
| Ag-111      | 2,0E+12         | 5,4E+01  |  |  |
| Al-26       | 3,0E+10         | 8,1E-01  |  |  |
| Am-241      | 6,0E+10         | 1,6E+00  |  |  |
| Am-241/Be   | 6,0E+10         | 1,6E+00  |  |  |
| Am-242m     | 3,0E+11         | 8,1E+00  |  |  |
| Am-243      | 2,0E+11         | 5,4E+00  |  |  |
| Am-244      | 9,0E+10         | 2,4E+00  |  |  |
| Ar-39       | 3,0E+14         | 8,1E+03  |  |  |
| Ar-41       | 5,0E+10         | 1,4E+00  |  |  |
| As-72       | 4,0E+10         | 1,1E+00  |  |  |
| As-73       | 4,0E+13         | 1,1E+03  |  |  |
| As-74       | 9,0E+10         | 2,4E+00  |  |  |
|             |                 |          |  |  |

| As-76   | 2,0E+11 | 5,4E+00 |
|---------|---------|---------|
| As-77   | 8,0E+12 | 2,2E+02 |
| At-211  | 5,0E+11 | 1,4E+01 |
| Au-193  | 6,0E+11 | 1,6E+01 |
| Au-194  | 7,0E+10 | 1,9E+00 |
| Au-195  | 2,0E+12 | 5,4E+01 |
| Au-198  | 2,0E+11 | 5,4E+00 |
| Au-199  | 9,0E+11 | 2,4E+01 |
| Ba-131  | 2,0E+11 | 5,4E+00 |
| Ba-133  | 2,0E+11 | 5,4E+00 |
| Ba-133m | 3,0E+11 | 8,1E+00 |
| Ba-140  | 3,0E+10 | 8,1E-01 |
| Be-10   | 3,0E+13 | 8,1E+02 |
| Be-7    | 1,0E+12 | 2,7E+01 |
| Bi-205  | 4,0E+10 | 1,1E+00 |
| Bi-206  | 2,0E+10 | 5,4E-01 |
| Bi-207  | 5,0E+10 | 1,4E+00 |
| Bi-210  | 8,0E+12 | 2,2E+02 |
| Bi-210m | 3,0E+11 | 8,1E+00 |
| Bi-212  | 5,0E+10 | 1,4E+00 |
| Bk-247  | 8,0E+10 | 2,2E+00 |
| Bk-249  | 1,0E+13 | 2,7E+02 |
| Br-76   | 3,0E+10 | 8,1E-01 |
| Br-77   | 2,0E+11 | 5,4E+00 |
| Br-82   | 3,0E+10 | 8,1E-01 |
| C-11    | 6,0E+10 | 1,6E+00 |
| C-14    | 5,0E+13 | 1,4E+03 |
| Ca-45   | 1,0E+14 | 2,7E+03 |
| Ca-47   | 6,0E+10 | 1,6E+00 |
| Cd-109  | 2,0E+13 | 5,4E+02 |
| Cd-113m | 4,0E+13 | 1,1E+03 |
| Cd-115  | 2,0E+11 | 5,4E+00 |
| Cd-115m | 3,0E+12 | 8,1E+01 |
| Ce-139  | 6,0E+11 | 1,6E+01 |
| Ce-141  | 1,0E+12 | 2,7E+01 |
| Ce-143  | 3,0E+11 | 8,1E+00 |
| Ce-144  | 9,0E+11 | 2,4E+01 |
| Cf-248  | 1,0E+11 | 2,7E+00 |
| Cf-249  | 1,0E+11 | 2,7E+00 |
| Cf-250  | 1,0E+11 | 2,7E+00 |
| Cf-251  | 1,0E+11 | 2,7E+00 |
| Cf-252  | 2,0E+10 | 5,4E-01 |

| Cf-253  | 4,0E+11 | 1,1E+01 |
|---------|---------|---------|
| Cf-254  | 3,0E+08 | 8,1E-03 |
| Cl-36   | 2,0E+13 | 5,4E+02 |
| C1-38   | 5,0E+10 | 1,4E+00 |
| Cm-240  | 3,0E+11 | 8,1E+00 |
| Cm-241  | 1,0E+11 | 2,7E+00 |
| Cm-242  | 4,0E+10 | 1,1E+00 |
| Cm-243  | 2,0E+11 | 5,4E+00 |
| Cm-244  | 5,0E+10 | 1,4E+00 |
| Cm-245  | 9,0E+10 | 2,4E+00 |
| Cm-246  | 2,0E+11 | 5,4E+00 |
| Cm-247  | 1,0E+09 | 2,7E-02 |
| Cm-248  | 5,0E+09 | 1,4E-01 |
| Co-55   | 3,0E+10 | 8,1E-01 |
| Co-56   | 2,0E+10 | 5,4E-01 |
| Co-57   | 7,0E+11 | 1,9E+01 |
| Co-58   | 7,0E+10 | 1,9E+00 |
| Co-58m  | 7,0E+10 | 1,9E+00 |
| Co-60   | 3,0E+10 | 8,1E-01 |
| Cr-51   | 2,0E+12 | 5,4E+01 |
| Cs-129  | 3,0E+11 | 8,1E+00 |
| Cs-131  | 2,0E+13 | 5,4E+02 |
| Cs-132  | 1,0E+11 | 2,7E+00 |
| Cs-134  | 4,0E+10 | 1,1E+00 |
| Cs-134m | 4,0E+10 | 1,1E+00 |
| Cs-136  | 3,0E+10 | 8,1E-01 |
| Cs-137  | 1,0E+11 | 2,7E+00 |
| Cu-64   | 3,0E+11 | 8,1E+00 |
| Cu-67   | 7,0E+11 | 1,9E+01 |
| Dy-159  | 6,0E+12 | 1,6E+02 |
| Dy-165  | 3,0E+12 | 8,1E+01 |
| Dy-166  | 1,0E+12 | 2,7E+01 |
| Er-169  | 2,0E+14 | 5,4E+03 |
| Er-171  | 2,0E+11 | 5,4E+00 |
| Eu-147  | 2,0E+11 | 5,4E+00 |
| Eu-148  | 3,0E+10 | 8,1E-01 |
| Eu-149  | 2,0E+12 | 5,4E+01 |
| Eu-150a | 5,0E+10 | 1,4E+00 |
| Eu-150b | 2,0E+12 | 5,4E+01 |
| Eu-152  | 6,0E+10 | 1,6E+00 |
| Eu-152m | 2,0E+11 | 5,4E+00 |
|         |         |         |

| Eu-154  | 6,0E+10 | 1,6E+00 |
|---------|---------|---------|
| Eu-155  | 2,0E+12 | 5,4E+01 |
| Eu-156  | 5,0E+10 | 1,4E+00 |
| F-18    | 6,0E+10 | 1,6E+00 |
| Fe-52   | 2,0E+10 | 5,4E-01 |
| Fe-55   | 8,0E+14 | 2,2E+04 |
| Fe-59   | 6,0E+10 | 1,6E+00 |
| Fe-60   | 6,0E+10 | 1,6E+00 |
| Ga-67   | 5,0E+11 | 1,4E+01 |
| Ga-68   | 7,0E+10 | 1,9E+00 |
| Ga-72   | 3,0E+10 | 8,1E-01 |
| Gd-146  | 3,0E+10 | 8,1E-01 |
| Gd-148  | 4,0E+11 | 1,1E+01 |
| Gd-153  | 1,0E+12 | 2,7E+01 |
| Gd-159  | 2,0E+12 | 5,4E+01 |
| Ge-68   | 7,0E+10 | 1,9E+00 |
| Ge-71   | 1,0E+15 | 2,7E+04 |
| Ge-77   | 6,0E+10 | 1,6E+00 |
| H-3     | 2,0E+15 | 5,4E+04 |
| Hf-172  | 4,0E+10 | 1,1E+00 |
| Hf-175  | 2,0E+11 | 5,4E+00 |
| Hf-181  | 1,0E+11 | 2,7E+00 |
| Hf-182  | 5,0E+10 | 1,4E+00 |
| Hg-194  | 7,0E+10 | 1,9E+00 |
| Hg-195m | 2,0E+11 | 5,4E+00 |
| Hg-197  | 2,0E+12 | 5,4E+01 |
| Hg-197m | 7,0E+11 | 1,9E+01 |
| Hg-203  | 3,0E+11 | 8,1E+00 |
| Ho-166  | 2,0E+12 | 5,4E+01 |
| Ho-166m | 4,0E+10 | 1,1E+00 |
| I-123   | 5,0E+11 | 1,4E+01 |
| I-124   | 6,0E+10 | 1,6E+00 |
| I-125   | 2,0E+11 | 5,4E+00 |
| I-126   | 1,0E+11 | 2,7E+00 |
| I-131   | 2,0E+11 | 5,4E+00 |
| I-132   | 3,0E+10 | 8,1E-01 |
| I-133   | 1,0E+11 | 2,7E+00 |
| I-134   | 3,0E+10 | 8,1E-01 |
| I-135   | 4,0E+10 | 1,1E+00 |
| In-111  | 2,0E+11 | 5,4E+00 |
| In-113m | 3,0E+11 | 8,1E+00 |
| In-114m | 8,0E+11 | 2,2E+01 |

| In-115m | 4,0E+11 | 1,1E+01 |
|---------|---------|---------|
| Ir-189  | 1,0E+12 | 2,7E+01 |
| Ir-190  | 5,0E+10 | 1,4E+00 |
| Ir-192  | 8,0E+10 | 2,2E+00 |
| Ir-194  | 7,0E+11 | 1,9E+01 |
| K-42    | 2,0E+11 | 5,4E+00 |
| K-43    | 7,0E+10 | 1,9E+00 |
| Kr-81   | 3,0E+13 | 8,1E+02 |
| Kr-85   | 3,0E+13 | 8,1E+02 |
| Kr-85m  | 5,0E+11 | 1,4E+01 |
| Kr-87   | 9,0E+10 | 2,4E+00 |
| La-137  | 2,0E+13 | 5,4E+02 |
| La-140  | 3,0E+10 | 8,1E-01 |
| Lu-172  | 4,0E+10 | 1,1E+00 |
| Lu-173  | 9,0E+11 | 2,4E+01 |
| Lu-174  | 8,0E+11 | 2,2E+01 |
| Lu-174m | 6,0E+11 | 1,6E+01 |
| Lu-177  | 2,0E+12 | 5,4E+01 |
| Mg-28   | 2,0E+10 | 5,4E-01 |
| Mn-52   | 2,0E+10 | 5,4E-01 |
| Mn-54   | 8,0E+10 | 2,2E+00 |
| Mn-56   | 4,0E+10 | 1,1E+00 |
| Mo-93   | 3,0E+14 | 8,1E+03 |
| Mo-99   | 3,0E+11 | 8,1E+00 |
| N-13    | 6,0E+10 | 1,6E+00 |
| Na-22   | 3,0E+10 | 8,1E-01 |
| Na-24   | 2,0E+10 | 5,4E-01 |
| Nb-93m  | 3,0E+14 | 8,1E+03 |
| Nb-94   | 4,0E+10 | 1,1E+00 |
| Nb-95   | 9,0E+10 | 2,4E+00 |
| Nb-97   | 1,0E+11 | 2,7E+00 |
| Nd-147  | 6,0E+11 | 1,6E+01 |
| Nd-149  | 2,0E+11 | 5,4E+00 |
| Ni-59   | 1,0E+15 | 2,7E+04 |
| Ni-63   | 6,0E+13 | 1,6E+03 |
| Ni-65   | 1,0E+11 | 2,7E+00 |
| Np-235  | 1,0E+14 | 2,7E+03 |
| Np-236a | 8,0E+11 | 2,2E+01 |
| Np-236b | 7,0E+09 | 1,9E-01 |
| Np-237  | 7,0E+10 | 1,9E+00 |
| Np-239  | 5,0E+11 | 1,4E+01 |
|         |         |         |

| Os-185    | 1,0E+11 | 2,7E+00 |
|-----------|---------|---------|
| Os-191    | 2,0E+12 | 5,4E+01 |
| Os-191m   | 1,0E+12 | 2,7E+01 |
| Os-193    | 1,0E+12 | 2,7E+01 |
| Os-194    | 7,0E+11 | 1,9E+01 |
| P-32      | 1,0E+13 | 2,7E+02 |
| P-33      | 2,0E+14 | 5,4E+03 |
| Pa-230    | 1,0E+11 | 2,7E+00 |
| Pa-231    | 6,0E+10 | 1,6E+00 |
| Pa-233    | 4,0E+11 | 1,1E+01 |
| Pb-201    | 9,0E+10 | 2,4E+00 |
| Pb-202    | 2,0E+11 | 5,4E+00 |
| Pb-203    | 2,0E+11 | 5,4E+00 |
| Pb-210    | 3,0E+11 | 8,1E+00 |
| Pb-212    | 5,0E+10 | 1,4E+00 |
| Pd-103    | 9,0E+13 | 2,4E+03 |
| Pd-109    | 2,0E+13 | 5,4E+02 |
| Pm-143    | 2,0E+11 | 5,4E+00 |
| Pm-144    | 4,0E+10 | 1,1E+00 |
| Pm-145    | 1,0E+13 | 2,7E+02 |
| Pm-147    | 4,0E+13 | 1,1E+03 |
| Pm-148m   | 3,0E+10 | 8,1E-01 |
| Pm-149    | 6,0E+12 | 1,6E+02 |
| Pm-151    | 2,0E+11 | 5,4E+00 |
| Po-210    | 6,0E+10 | 1,6E+00 |
| Pr-142    | 1,0E+12 | 2,7E+01 |
| Pr-143    | 3,0E+13 | 8,1E+02 |
| Pt-188    | 4,0E+10 | 1,1E+00 |
| Pt-191    | 3,0E+11 | 8,1E+00 |
| Pt-193    | 3,0E+15 | 8,1E+04 |
| Pt-193m   | 1,0E+13 | 2,7E+02 |
| Pt-195m   | 2,0E+12 | 5,4E+01 |
| Pt-197    | 4,0E+12 | 1,1E+02 |
| Pt-197m   | 9,0E+11 | 2,4E+01 |
| Pu-236    | 1,0E+11 | 2,7E+00 |
| Pu-237    | 2,0E+12 | 5,4E+01 |
| Pu-238    | 6,0E+10 | 1,6E+00 |
| Pu-239    | 6,0E+10 | 1,6E+00 |
| Pu-239/Be | 6,0E+10 | 1,6E+00 |
| Pu-240    | 6,0E+10 | 1,6E+00 |
| Pu-241    | 3,0E+12 | 8,1E+01 |
| Pu-242    | 7,0E+10 | 1,9E+00 |

| Pu-244          | 3,0E+08 | 8,1E-03 |
|-----------------|---------|---------|
| Ra-223          | 1,0E+11 | 2,7E+00 |
| Ra-224          | 5,0E+10 | 1,4E+00 |
| Ra-225          | 1,0E+11 | 2,7E+00 |
| Ra-226          | 4,0E+10 | 1,1E+00 |
| Ra-228          | 3,0E+10 | 8,1E-01 |
| Rb-81           | 1,0E+11 | 2,7E+00 |
| Rb-83           | 1,0E+11 | 2,7E+00 |
| Rb-84           | 7,0E+10 | 1,9E+00 |
| Rb-86           | 7,0E+11 | 1,9E+01 |
| Re-184          | 8,0E+10 | 2,2E+00 |
| Re-184m         | 7,0E+10 | 1,9E+00 |
| Re-186          | 4,0E+12 | 1,1E+02 |
| Re-188          | 1,0E+12 | 2,7E+01 |
| Re-189          | 1,0E+12 | 2,7E+01 |
| Rh-101          | 3,0E+11 | 8,1E+00 |
| Rh-102          | 3,0E+10 | 8,1E-01 |
| Rh-102m         | 1,0E+11 | 2,7E+00 |
| Rh-103m         | 9,0E+14 | 2,4E+04 |
| Rh-105          | 9,0E+11 | 2,4E+01 |
| Rh-99           | 1,0E+11 | 2,7E+00 |
| Rn-222          | 4,0E+10 | 1,1E+00 |
| Ru-103          | 1,0E+11 | 2,7E+00 |
| Ru-105          | 8,0E+10 | 2,2E+00 |
| Ru-106 (Rh-106) | 3,0E+11 | 8,1E+00 |
| Ru-97           | 3,0E+11 | 8,1E+00 |
| S-35            | 6,0E+13 | 1,6E+03 |
| Sb-122          | 1,0E+11 | 2,7E+00 |
| Sb-124          | 4,0E+10 | 1,1E+00 |
| Sb-125          | 2,0E+11 | 5,4E+00 |
| Sb-126          | 2,0E+10 | 5,4E-01 |
| Sc-44           | 3,0E+10 | 8,1E-01 |
| Sc-46           | 3,0E+10 | 8,1E-01 |
| Sc-47           | 7,0E+11 | 1,9E+01 |
| Sc-48           | 2,0E+10 | 5,4E-01 |
| Se-75           | 2,0E+11 | 5,4E+00 |
| Se-79           | 2,0E+14 | 5,4E+03 |
| Si-31           | 1,0E+13 | 2,7E+02 |
| Si-32           | 7,0E+12 | 1,9E+02 |
| Sm-145          | 4,0E+12 | 1,1E+02 |
| Sm-151          | 5,0E+14 | 1,4E+04 |
|                 |         |         |

| Sm-153       | 2,0E+12 | 5,4E+01 |
|--------------|---------|---------|
| Sn-11        | 3,0E+11 | 8,1E+00 |
| Sn-117m      | 5,0E+11 | 1,4E+01 |
| Sn-119m      | 7,0E+13 | 1,9E+03 |
| Sn-121m      | 7,0E+13 | 1,9E+03 |
| Sn-123       | 7,0E+12 | 1,9E+02 |
| Sn-125       | 1,0E+11 | 2,7E+00 |
| Sn-126       | 3,0E+10 | 8,1E-01 |
| Sr-82        | 6,0E+10 | 1,6E+00 |
| Sr-85        | 1,0E+11 | 2,7E+00 |
| Sr-85m       | 1,0E+11 | 2,7E+00 |
| Sr-87m       | 2,0E+11 | 5,4E+00 |
| Sr-89        | 2,0E+13 | 5,4E+02 |
| Sr-90        | 1,0E+12 | 2,7E+01 |
| Sr-90 (Y-90) | 1,0E+12 | 2,7E+01 |
| Sr-91        | 6,0E+10 | 1,6E+00 |
| Sr-92        | 4,0E+10 | 1,1E+00 |
| Ta-178a      | 7,0E+10 | 1,9E+00 |
| Ta-179       | 6,0E+12 | 1,6E+02 |
| Ta-182       | 6,0E+10 | 1,6E+00 |
| Tb-157       | 1,0E+14 | 2,7E+03 |
| Tb-158       | 9,0E+10 | 2,4E+00 |
| Tb-160       | 6,0E+10 | 1,6E+00 |
| Tc-95m       | 1,0E+11 | 2,7E+00 |
| Tc-96        | 3,0E+10 | 8,1E-01 |
| Tc-96m       | 3,0E+10 | 8,1E-01 |
| Tc-97m       | 4,0E+13 | 1,1E+03 |
| Tc-98        | 5,0E+10 | 1,4E+00 |
| Tc-99        | 3,0E+13 | 8,1E+02 |
| Tc-99m       | 7,0E+11 | 1,9E+01 |
| Te-121       | 1,0E+11 | 2,7E+00 |
| Te-121m      | 1,0E+11 | 2,7E+00 |
| Te-123m      | 6,0E+11 | 1,6E+01 |
| Te-125m      | 1,0E+13 | 2,7E+02 |
| Te-127       | 1,0E+13 | 2,7E+02 |
| Te-127m      | 3,0E+12 | 8,1E+01 |
| Te-129       | 1,0E+12 | 2,7E+01 |
| Te-129m      | 1,0E+12 | 2,7E+01 |
| Te-131m      | 4,0E+10 | 1,1E+00 |
| Te-132       | 3,0E+10 | 8,1E-01 |
| Th-227       | 8,0E+10 | 2,2E+00 |
| Th-228       | 4,0E+10 | 1,1E+00 |

| Th-229              | 1,0E+10 | 2,7E-01 |
|---------------------|---------|---------|
| Th-230              | 7,0E+08 | 1,9E-02 |
| Th-231              | 1,0E+13 | 2,7E+02 |
| Th-234              | 2,0E+12 | 5,4E+01 |
| Ti-44               | 3,0E+10 | 8,1E-01 |
| T1-200              | 5,0E+10 | 1,4E+00 |
| Tl-201              | 1,0E+12 | 2,7E+01 |
| T1-202              | 2,0E+11 | 5,4E+00 |
| Tl-204              | 2,0E+13 | 5,4E+02 |
| Tm-167              | 6,0E+11 | 1,6E+01 |
| Tm-170              | 2,0E+13 | 5,4E+02 |
| Tm-171              | 3,0E+14 | 8,1E+03 |
| U обогащение 10-20% | 8,0E+08 | 2,2E-02 |
| U, обогащение >20 % | 8,0E+07 | 2,2E-03 |
| U-230               | 4,0E+10 | 1,1E+00 |
| U-232               | 6,0E+08 | 1,6E-02 |
| U-233               | 7,0E+10 | 1,9E+00 |
| U-234               | 1,0E+11 | 2,7E+00 |
| U-235               | 8,0E+07 | 2,2E-03 |
| U-236               | 2,0E+11 | 5,4E+00 |
| V-48                | 2,0E+10 | 5,4E-01 |
| V-49                | 2,0E+15 | 5,4E+04 |
| W-178               | 9,0E+11 | 2,4E+01 |
| W-181               | 5,0E+12 | 1,4E+02 |
| W-185               | 1,0E+14 | 2,7E+03 |
| W-187               | 1,0E+11 | 2,7E+00 |
| W-188               | 1,0E+12 | 2,7E+01 |
| Xe-122              | 6,0E+10 | 1,6E+00 |
| Xe-123              | 9,0E+10 | 2,4E+00 |
| Xe-127              | 3,0E+11 | 8,1E+00 |
| Xe-131m             | 1,0E+13 | 2,7E+02 |
| Xe-133              | 3,0E+12 | 8,1E+01 |
| Xe-135              | 3,0E+11 | 8,1E+00 |
| Y-87                | 9,0E+10 | 2,4E+00 |
| Y-88                | 3,0E+10 | 8,1E-01 |
| Y-90                | 5,0E+12 | 1,4E+02 |
| Y-91                | 8,0E+12 | 2,2E+02 |
| Y-91m               | 1,0E+11 | 2,7E+00 |
| Y-92                | 2,0E+11 | 5,4E+00 |
| Y-93                | 6,0E+11 | 1,6E+01 |
| Yb-169              | 3,0E+11 | 8,1E+00 |

| Yb-175 | 2,0E+12 | 5,4E+01 |
|--------|---------|---------|
| Zn-65  | 1,0E+11 | 2,7E+00 |
| Zn-69  | 3,0E+13 | 8,1E+02 |
| Zn-69m | 2,0E+11 | 5,4E+00 |
| Zr-8   | 2,0E+10 | 5,4E-01 |
| Zr-95  | 4,0E+10 | 1,1E+00 |
| Zr-97  | 4,0E+10 | 1,1E+00 |

Приложение 27 к Гигиеническим нормативам "Санитарно-эпидемиологические требования к обеспечению радиационной безопасности"

## Нормативы вмешательства на загрязненных территориях

- 1. На разных стадиях радиационной аварии вмешательство регулируется зонированием загрязненных территорий, основанным на величине годовой эффективной дозы, которая может быть получена жителями в отсутствии мер радиационной защиты. Под годовой дозой здесь понимается эффективная доза, средняя у жителей населенного пункта за текущий год, обусловленная искусственными радионуклидами, поступившими в окружающую среду в результате радиационной аварии.
- 2. На территории, где годовая эффективная доза не превышает 1 мЗв, производится обычный контроль радиоактивного загрязнения объектов окружающей среды и сельскохозяйственной продукции, по результатам которого оценивается доза облучения населения. Проживание и хозяйственная деятельность населения на этой территории по радиационному фактору не ограничивается. Эта территория не относится к зонам радиоактивного загрязнения. При величине годовой дозы более 1 мЗв загрязненные территории по характеру необходимого контроля обстановки и защитных мероприятий подразделяются на зоны.
- 3. Зонирование на ранней и промежуточной стадиях радиационной аварии определяется пунктом 55 настоящих нормативов.
  - 4. Зонирование на восстановительной стадии радиационной аварии:
- 1) зона радиационного контроля от 1 м3в до 5 м3в. В этой зоне помимо мониторинга радиоактивности объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения населения и его критических групп осуществляются меры по снижению доз на основе принципа оптимизации и другие необходимые активные меры защиты населения;
- 2) зона ограниченного проживания населения от 5 м3в до 20 м3в. В этой зоне осуществляются те же меры мониторинга и защиты населения, что и в зоне радиационного контроля. Добровольный въезд на указанную территорию для

постоянного проживания не ограничивается. Лицам, въезжающим на указанную территорию для постоянного проживания, разъясняется риск ущербу здоровья, обусловленный воздействием радиации;

- 3) зона отселения от 20 мЗв до 50 мЗв. Въезд на указанную территорию для постоянного проживания не разрешен. В этой зоне не допускается постоянное проживание лиц репродуктивного возраста и детей. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты;
- 4) зона отчуждения более 50 мЗв. В этой зоне постоянное проживание не допускается, а хозяйственная деятельность и природопользование регулируются специальными актами. Осуществляются меры мониторинга и защиты работающих с обязательным и индивидуальным дозиметрическим контролем.
- 5. Нормативы вмешательства при обнаружении локальных радиоактивных загрязнений:
- 1) уровень исследования от 0,01 до 0,3 мЗв/год. Это такой уровень радиационного воздействия источника на население, при достижении которого требуется выполнить исследование источника с целью уточнения оценки величины годовой эффективной дозы и определения величины дозы, ожидаемой за 70 лет;
- 2) уровень вмешательства более 0,3 мЗв/год. Это такой уровень радиационного воздействия, при превышении которого требуется проведение защитных мероприятий с целью ограничения облучения населения. Масштабы и характер мероприятий определяются с учетом интенсивности радиационного воздействия на население по величине ожидаемой коллективной эффективной дозы за 70 лет.
- 6. Решение о необходимости, а также о характере, объеме и очередности защитных мероприятий принимается территориальными органами исполнительной власти с учетом следующих основных условий:
- 1) местонахождения загрязненных участков (жилая зона: дворовые участки, дороги и подъездные пути, жилые здания, сельскохозяйственные угодья, садовые и приусадебные участки и другие; промышленная зона: территория предприятия, здания промышленного и административного назначения, места для сбора отходов и другое);
  - 2) площади загрязненных участков;
- 3) возможного проведения на участке загрязнения работ, действий (процессов ), которые могут привести к увеличению уровней радиационного воздействия на население;
- 4) мощности дозы гамма-излучения, обусловленной радиоактивным загрязнением;

| 5)      | изменения   | мощности      | дозы   | гамма-и  | излучения | на | различной | глубине | OT |
|---------|-------------|---------------|--------|----------|-----------|----|-----------|---------|----|
| поверхн | ности почвы | і (при загряз | знениі | и террит | ории).    |    |           |         |    |

© 2012. РГП на ПХВ «Институт законодательства и правовой информации Республики Казахстан» Министерства юстиции Республики Казахстан